

ENVIRONMENTAL

Demonstration of the HALO® PFAS Delay Column

TEST CONDITIONS:

Analytical Column: HALO® PFAS, 2.7 μm , 2.1 \times 100 mm

Part Number: 92812-613

Delay Column: HALO® PFAS Delay, 3.0 x 50 mm

Part Number: 92113-415

Mobile Phase A: 20 mM Ammonium Acetete

B: Methanol

Gradient:

Time	%B
0.0	20
6	90
8	90
8.10	20
10.00	End

Flow Rate: 0.4 mL/min Pressure: 505 bar Temperature: 44 °C Detection: -ESI MRM Injection Volume: 2.0 µL

Sample Solvent: Methanol (96%) Water (4%) LC System: Agilent Triple Quadrupole LC/MS 6400

MS Conditions:

Gas Temp: 130 °C Nebulizer: 25 psi Gas Flow: 11 L/min Sheath Gas Heater: 250 °C

Sileatii Gas Heater. 230

Capillary: 3500 V

Data courtesy of STRIDE Center for PFAS Solutions

Advanced Materials Technology offers both HALO® PFAS delay and analytical columns to further mitigate the effects of PFAS contamination from instrumentation, and provide a more accurate analysis. Here we show the functionality of the delay column by showing PFAS species PFOA, separated from the PFOA originating from the instrument components.

