

QUALITY POLICY

AMT is committed to providing world-class innovative products that uniquely fill the growing needs of small molecule and large molecule separation scientists.

We take pride in delivering products that exceed customers' expectations on quality and delivery time and collaborate to break down any barriers that would prevent an exceptional customer experience.

We continually strive to improve our organization to stay focused on safety, quality, and cost.

We embrace ISO9001 standards in our work systems and daily work. We pledge to have dynamic leadership promoting culture of excellence embedded in every employee.

ENVIRONMENTAL SOLUTIONS

is the newest family of products in Advanced Materials Technology's product line. Comprised of chromatography columns designed specifically to address environmental analysis,

HALO® delivers results. Built upon proven Fused-Core® technology, HALO® ENVIROCLASS delivers high efficiency separations with the rugged performance required to meet challenging environmental sample matrices.

From performance designed application specific phases to separate per-and polyfluorinated alkyl substances (PFAS) and polycyclic aromatic hydrocarbons (PAH), HALO® ENVIROCLASS represents more than method assured products. It offers a suite of solutions for other persistent, high environmental-impact contamination agents such as pesticides, mycotoxins, herbicides and more all based upon HALO's 15 years of innovative and trusted technology all with the understanding of the unique needs of the environmental laboratory.

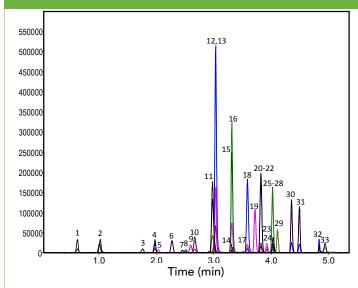
HALO® PFAS

Designed for separation of novel and legacy short chain and long chain PFAS compounds containing branched and linear isomers, along with EPA methodology requirements in mind, HALO® PFAS offers a holistic solution. With both a PFAS specific delay column optimized to prevent background PFAS contamination from interfering with the sample results and an analytical column for PFAS sample separation and detection, the HALO® PFAS solution delivers excellent selectivity, peak shape and necessary retention to perform fast, high resolution separations in EPA methods 537.1, 533 and 8327.

The HALO® PFAS solution is different from other C18 offerings in that it is quality assured for PFAS analysis providing confidence it will meet application demands.

- Application-assured through method qualified lot analysis
- Optimal 2.7 µm Fused-Core® particle for rugged, reliable performance delivering high efficiency, low back pressure separations
- Endcapped alkyl phases for high sensitivity (no bleed) LCMS analysis
- Pressure limit: 600 bar/9000 psi

HALO® PFAS


HALO® PFAS DELAY

APPLICATIONS

- EPA 533
- EPA 537.1
- EPA 8327
- Emerging PFAS

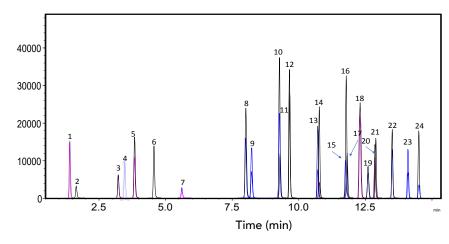
RAPID ANALYSIS OF 33 PFAS COMPOUNDS IN UNDER 5 MINUTES

High speed separation of 33 PFAS species found in EPA 537.1, EPA 533, and EPA 8327, completed in under 5

TEST CONDITIONS

Analytical Column: HALO® PFAS, 2.7 µm, 2.1 x 100 mm Delay Column: HALO $^{\circ}$ PFAS Delay, 2.7 μm , 3.0 \times 50 mm Mobile Phase A: 10 mM Ammonium Acetete Mobile Phase B: Methanol

Gradient: 33-98 %B in 4.0 min: 98-100 %B in 0.1 min.; hold @ 100 %B for 2min.


Flow Rate: 0.4 mL/min Pressure: 479 bar Temperature: 35 °C Injection Volume: 2.0 µL

Sample Solvent: Methanol (96%) Water (4%)

PEAK#	COMPOUND		PEAK #	COMPOUND
1	PFBA		18	PFOS
2	4:2FTS		19	9CI-PF3ONS
3	PFPeA		20	8:2FTS
4	PFBS		21	PFNS
5	PFHpS		22	PFDA
6	PFPeS		23	N-MeFOSAA
7	PFMPA		24	PFNA
8	PFHxA		25	NFDHA
9	PFEESA		26	PFUnA
10	HFPO-DA		27	N-EtFOSAA
11	PFHxS		28	6:2FTS
12	NaDONA		29	11Cl-PF3OUdS
13	ADONA		30	PFTrDA
14	FOSA		31	PFDoA
15	PFOA		32	PFTeDA
16	PFMBA		33	PFDS
17	PFHpA			

PFAS ANALYSIS ACCORDING TO EPA 8327

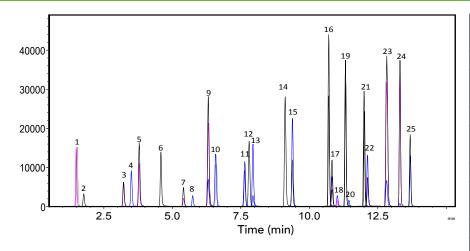
HALO® PFAS provides a high resolution separation for EPA 8327 used for the analysis of non-potable water

PEAK #	COMPOUND	PEAK #	COMPOUND
1	PFBA	13	PFNA
2	4:2FTS	14	PFOS
3	PFPeA	15	PFNS
4	PFBS	16	PFDA
5	PFHpS	17	8:2FTS
6	PFPeS	18	N-MeFOSAA
7	PFHxA	19	6:2FTS
8	PFHpA	20	PFUnA
9	PFHxS	21	N-EtFOSAA
10	FOSA	22	PFDoA
11	PFOA	23	PFTrDA
12	PFDS	24	PFTeDA

TEST CONDITIONS

Analytical Column: HALO® PFAS, 2.7 μ m, 2.1 x 100 mm Delay Column: HALO® PFAS Delay, 2.7 μ m, 3.0 x 50 mm Mobile Phase A: 10 mM Ammonium Acetete

Mobile Phase B: Methanol Gradient: 33-98 %B in 18 min.


Flow Rate: 0.4 mL/min Initial Back Pressure: 485 bar Temperature: 35 °C

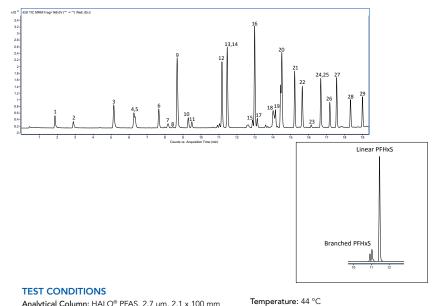
Injection Volume: 2.0 µL Sample Solvent: Methanol (96%) / Water (4%)

PFAS ANALYSIS ACCORDING TO EPA 533

EPA Method 533 is for drinking water analysis and targets both short and long chain PFAS compounds.

PEAK #	COMPOUND	PEAK#	COMPOUND
1	PFBA	14	PFOA
2	4-2FTS	15	PFmbA
3	PFPeA	16	PFNA
4	PFBS	17	PFOS
5	PFHpS	18	9CI-PF3ONS
6	PFPeS	19	PFDA
7	PFmpA	20	8-2FTS
8	PFHxA	21	6-2FTS
9	PFEESA	22	NFDHA
10	HFPO-DA	23	PFUnA
11	PFHpA	24	11Cl-PF3OUdS
12	PFHxS	25	PFDoA
13	ADONA		

TEST CONDITIONS


Analytical Column: HALO® PFAS, 2.7 μ m, 2.1 \times 100 mm Delay Column: HALO® PFAS Delay, 2.7 μ m, 3.0 \times 50 mm Mobile Phase A: 10 mM Ammonium Acetete

Mobile Phase B: Methanol Gradient: 33-98 %B in 18 min. Flow Rate: 0.4 mL/min Initial Back Pressure: 485 bar Temperature: 35 °C

Injection Volume: 2.0 µL Sample Solvent: Methanol (96%) / Water (4%)

ANALYSIS OF PFAS IN WELL WATER

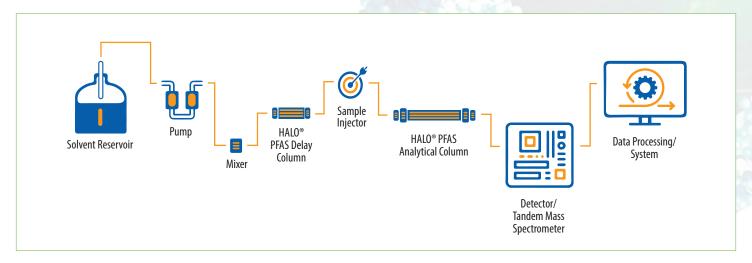
Method 533 complements EPA Method 537.1 and can be used to test for 11 additional PFAS species. Here we show a clear separation of the branched and linear isomers of PFAS species PFHxS, found in a spiked well water sample.

PEAK#	COMPOUND	PEAK #	COMPOUND
1	PFBA	16	PFOA
2	PFMPA	17	PFHpS
3	PFPeA	18	PFNA
4	PFBS	19	PFOS
5	PFMBA	20	9CI-PF3ONS
6	PFEESA	21	8-2FTS
7	NFDHA	22	PFDA
8	4-2FTS	23	NMeFOSAA
9	PFHxA	24	NEtFOSAA
10	PFPeS	25	PFUnA
11	HFPO-DA	26	11CI-PF3OUdS
12	PFHpA	27	PFDoA
13	PFHxS	28	PFTrA
14	ADONA	29	PFTA
15	6-2FTS		

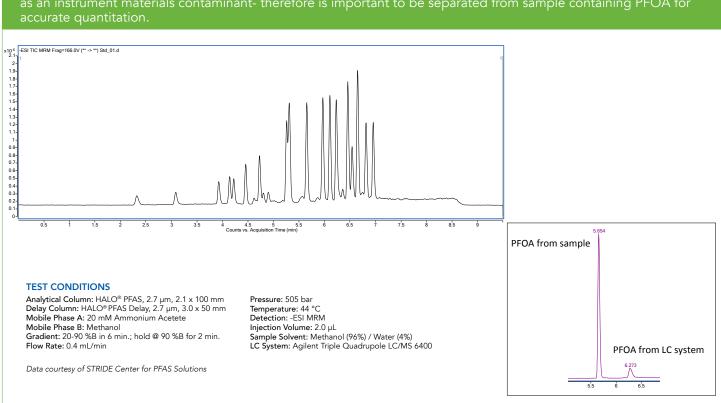
Analytical Column: HALO $^{\circ}$ PFAS, 2.7 μ m, 2.1 x 100 mm Delay Column: HALO $^{\circ}$ PFAS Delay, 2.7 μ m, 3.0 x 50 mm Mobile Phase A: 20 mM Ammonium Acetete Mobile Phase B: Methanol

Gradient: 20-90 %B in 15 min.; hold @ 90 %B for 5 min. Flow Rate: 0.4 mL/min

Pressure: 505 bar


Detection: -ESI MRM Injection Volume: 2.0 µL Sample Solvent: Methanol (96%) / Water (4%) LC System: Agilent Triple Quadrupole LC/MS 6400

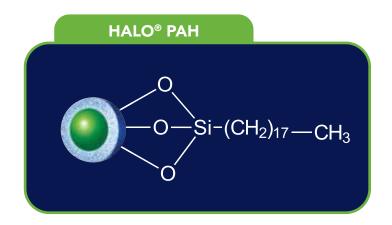
Data courtesy of STRIDE Center for PFAS Solutions


HALO® PFAS DELAY COLUMN

HALO® PFAS Delay is an application assured column solution. The delay column is used to prevent background PFAS contamination from interfering with the PFAS of interest that are separated with the analytical column. The delay column bonded phase is a highly retentive endcapped silane chosen for its ability to demonstrate delay of background instrument PFAS contamination across multiple mobile phase conditions. For this reason, the HALO® PFAS Delay column is placed upstream of the sample injector.

DEMONSTRATION OF THE HALO® PFAS DELAY COLUMN

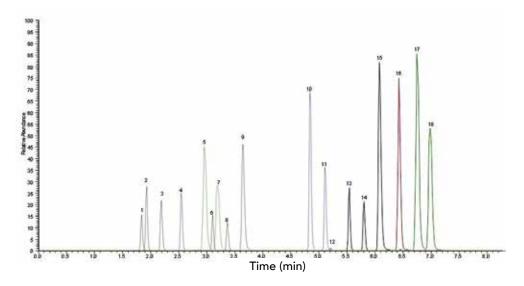
Demonstration of the delay column utility for PFOA extracted ion. The prevalence of PFOA is commonly observed as an instrument materials contaminant- therefore is important to be separated from sample containing PFOA for accurate quantitation.



HALO® PAH

The HALO® PAH is an un-endcapped trifunctional C18 bonded phase with proprietary manufacturing process designed on proven Fused-Core® technology to provide a fast, efficient separation of PAH compounds.

The HALO® PAH delivers a method-specific, robust, high efficiency separation of 16 standard PAH compounds with a resolution value of at least 1.5 in under 5 minutes for EPA 8310 and EPA 610.

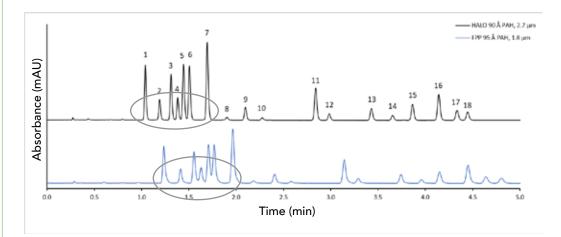

- Application-assured through method qualified lot analysis
- Optimal 2.7 µm Fused-Core® particle for rugged, reliable performance delivering high efficiency, low back pressure separations
- Well suited for UV, Fluorescence and MS detection
- Pressure limit: 600 bar/9000 psi

APPLICATIONS

- EPA 610
- EPA 8310 +2
- EU 15+1
- Emerging PAHs

Rapid LCMS analysis of PAH compounds using HALO® PAH

TEST CONDITIONS


Column: HALO 90 Å PAH, 2.7 μ m, 2.1 x 100 mm Flow Rate: 0.4 mL/min Pressure: 289 bar Column Temperature: 30 °C Injection Volume: 1 μ L

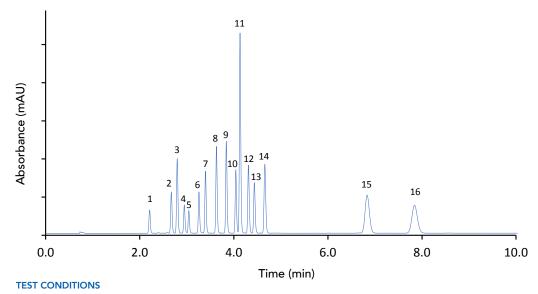
Sample Solvent: Methanol LC System: Shimadzu Nexera Mobile Phase A: Water/0.1% formic acid Mobile Phase B: Acetonitrile/0.1% formic acid Gradient: 40-100 %B in 5.0 min; hold @ 100 %B for 3 min

PEAK #	COMPOUND	
1	Naphthalene	
2	Acenaphthylene	
3	1-Methylnaphthalene	
4	2-Methylnaphthalene	
5	Acenaphthene	
6	Fluorene	
7	Phenanthrene	
8	Anthracene	
9	Fluoranthene	
10	Pyrene	
11	Benzo[a]anthracene	
12	Chrysene	
13	Benzo[b]fluoranthene	
14	Benzo[k]fluoranthene	
15	Benzo[a]pyrene	
16	Dibenzo[a,h]anthracene	
17	Benzo[ghi]perylene	
18	Indeno[1,2,3-cd]pyrene	

HALO® PAH COMPETITIVE ADVANTAGE

HALO® PAH outperforms a fully porous particle (FPP) 1.8 μ m, 95 Å column for a fast 5 min separation of method EPA 8310 + 2 demonstrating improved speed and resolution.

PEAK # COMPOUND	
1	Naphthalene
2	Acenaphthylene
3	1-Methylnaphthalene
4	2-Methylnaphthalene
5	Acenaphthene
6	Fluorene
7	Phenanthrene
8	Anthracene
9	Fluoranthene
10	Pyrene
11	Benzo[a]anthracene
12	Chrysene
13	Benzo[b]fluoranthene
14	Benzo[k]fluoranthene
15	Benzo[a]pyrene
16	Dibenzo[a,h]anthracene
17	Benzo[ghi]perylene
18	Indeno[1,2,3-cd]pyrene


TEST CONDITIONS

Flow Rate: 1.8 mL/min

Column: HALO 90 Å PAH, 2.7 μ m, 4.6 \times 50 mm Competitor Column: FPP 95 Å PAH, 1.8 μ m, 4.6 \times 50 mm Mobile Phase A: Water Mobile Phase B: Acetonitrile Gradient: 50-100 %B in 4 min; hold @ 100 %B for 1 min. HALO® Back Pressure: 256 bar Competitor Back Pressure: 344 bar Temperature: 30 °C Detection: 280 nm Injection Volume: 2 µL

SEPARATION OF EU 15 + 1 USING HALO® PAH

The separation is completed on a 4.6×50 mm HALO® PAH column in less than 8 minutes with excellent resolution between the critical pairs 4 and 5 which only differ by the presence of a methyl group in this EU 15 + 1 separation.

PEAK #	COMPOUND
1	Benzo[c]fluorene
2	Cyclopenta[cd]pyrene
3	Benzo[a]anthracene
4	Chrysene
5	5-Methylchrysene
6	Benzo[j]fluoranthene
7	Benzo[b]fluoranthene
8	Benzo[k]fluoranthene
9	Benzo[a]pyrene
10	Dibenzo[a,l]pyrene
11	Dibenz[a,h]anthracene
12	Benzo[ghi]perylene
13	Indeno[1,2,3-cd]pyrene
14	Dibenzo[a,e]pyrene
15	Dibenzo[a,i]pyrene
16	Dibenzo[a,h]pyrene

Column: HALO 90 Å PAH, 2.7 μm , 4.6 \times 50 mm

Mobile Phase A: Water Mobile Phase B: Acetonitrile

Gradient: 50-100% B in 4 min.; hold @ 100% for 6 min

Flow Rate: 1.8 mL/min

Temperature: 30 °C Detection: 292 nm

Injection Volume: 10 µL Data Rate: 100 Hz

LC System: Shimadzu Nexera X2

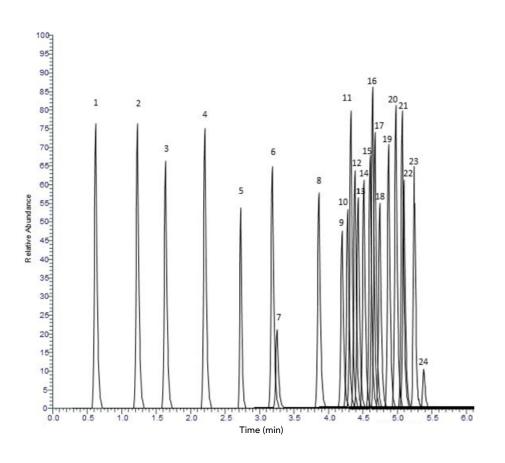
ENVIROCLASS SOLUTIONS

For the protection of human and environmental health, increased research and regulations of chemicals continue to drive more challenging separation and detection demands. HALO® provides a portfolio of selectivities and particle sizes designed for analysis of small molecules of interest to environmental scientists. Whether your research is driven by HPLC, UHPLC, or LCMS, HALO® offers a tailored solution for your demands.

MYCOTOXINS: toxins produced by molds (fungi) and can accumulate in crops, where they pose health hazards to humans and animals.

PESTICIDES: any substance used to kill, repel, or control certain forms of plant or animal life that are considered to be pests.

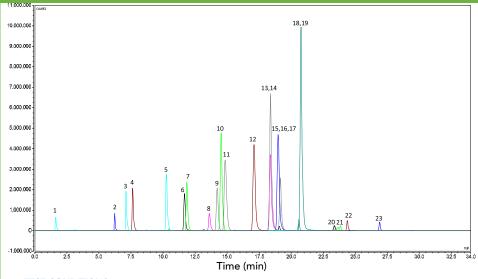
HERBICIDES: a broad class of pesticides that are used to remove nuisance plants.



CARBONYL COMPOUNDS: significant source of organic carbon balance in both aquatic and atmospheric oxidation processes of hydrocarbons often from vehicle emissions and industrial plants.

The 2 μ m HALO® PFP is an ideal choice for high throughput LCMS analysis of mycotoxins, in which multiple isobaric species separation is needed. Here 24 compounds are separated in 5.5 minutes.

PEAK#	COMPOUND
1	Nivalenol
2	Deoxynivalenol
3	Deoxynivalenol-3-glu- coside
4	Fusarenon X
5	Neosolaniol
6	15-Acetyldeoxyniva- lenol
7	3-Acetyldeoxynivalenol
8	Gliotoxin
9	Aflatoxin G2
10	Aflatoxin M1
11	Aflatoxin G1
12	Aflatoxin B2
13	HT-2 + Na
14	Diacetoxyscirpenol
15	Aflatoxin B1
16	Ochratoxin A
17	T-2 +Na
18	Ochratoxin B
19	Citrinin
20	Zearalenone
21	Patulin +MEOH
21 22	Patulin +MEOH Fumonisin B1


TEST CONDITIONS

TEST CONDITIONS			
Column: HALO 90 Å PFP, 2 µm, 2 x 50 mm	Gradient:	TIME	% B
Mobile Phase A: Water/2mM ammonium		0.01	15
formate/0.1% Formic acid		1.0	25
Mobile Phase B: Methanol/2mM ammonium		2.0	40
formate/0.1% Formic acid		2.50	41
		4.50	100
		5.50	100
		5.51	15
		6.50	Finished

Flow Rate: 0.4 mL/min Initial Pressure: 485 bar Temperature: 40 °C Injection Volume: 1 µL Sample Solvent: 95/5 water/methanol LC System: Shimadzu Nexera X2 Detection: +ESI MS/MS

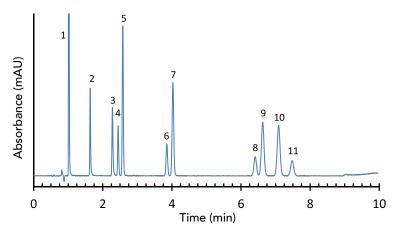
High resolution LCMS separation of pesticides using HALO® Biphenyl, which offers 100% aqueous compatibility, ideal to enhance retention of the early eluting polar pesticides.

PEAK#	COMPOUND
1	Daminozide
2	Flonicamid
3	Thiamethoxam
4	Imidacloprid
5	Paclobutrazol
6	Fenhexamid
7	Myclobutanil
8	Bifenazate
9	Dimethomorph Isomer 1
10	Spirotetramat
11	Dimethomorph Isomer 2
12	Spinosad A
13	Spinosad D
14	Trifloxystrobin
15	Spinetoram
16	Pyrethrin II
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

COMPOUND
Piperonyl butoxide
Pyrethrin I
Etoxazole
Abamectin A
Cypermethrin
Bifenthrin
Acequinocyl

Fludioxonil (observed in negative ion mode)

TEST CONDITIONS


Column: HALO 90 Å Biphenyl, 2.7 µm, 2.1 x 100 mm A=Water/0.1% formic acid/4 mM ammonium formate B=Acetonitrile/0.1% formic acid/4 mM ammonium formate

Gradient: 0-15% B in 1.01 min; 15-35% B in 3.99 min; 35-62% B in 1 min; 62-100% B in 25 min; hold at 100% B for 4 min

Flow Rate: 0.2 mL/min Pressure: 89 bar (initial) Temperature: 40 °C Injection Volume: 1 µL

Sample Solvent: acetonitrile Detection: +ESI

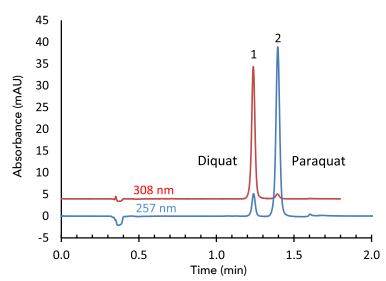
11 triazine pesticides are separated in less than 8 minutes using a HALO® AQ-C18 column for its symmetrical peak shape and high resolution.

PEAK#	COMPOUND	
1	Acetone (solvent)	
2	Atraton	
3	Prometon	
4	Simazine	
5	Simetryn	
6	Atrazine	
7	Ametryn	
8	Propazine	
9	Prometryn	
10	Terbutryn	
11	Terbuthylazine	

TEST CONDITIONS

Column: HALO AQ-C18, 2.7 μ m, 4.6 x 150 mm Mobile Phase A: 0.02 M sodium phosphate buffer, pH=3.0 Mobile Phase B: Acetonitrile

Gradient: hold at 40% B for 8 min; 40-75% B in 2 min


Flow Rate: 1.6 mL/min.

Pressure: 310 bar at start Temperature: 35°C Detection: UV 254 nm, VWD Injection Volume: 2.0 µL

Sample Solvent: 25/75: acetone/acetonitrile

EPA Method 549.2 specifies the use of two different wavelengths to limit potential matrix interferences. The separation of diquat and paraquat is complete in less than 1.5 minutes on a HALO® Phenyl-Hexyl column using an ion-pair containing mobile phase.

PEAK#	EAK # COMPOUND	
1	Diquat dibromide	
2	Paraquat dichloride	

TEST CONDITIONS

Column: HALO 90 Å Phenyl-Hexyl, 5 µm

3.0 x 100 mm

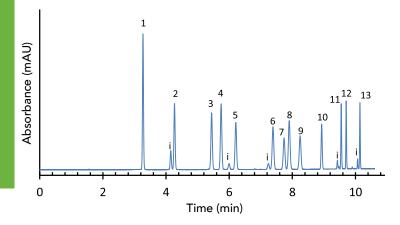
Mobile Phase: 13.5 mL orthophosphoric acid, 10.3 mL diethylamine and 3.0 g

10.3 mL diethylamine and 3.0 g of hexane-sulfonic acid, sodium salt

in 1 L of water

Flow Rate: 1.0 mL/min Pressure: 156 bar

Temperature: 30 °C


Detection: UV 257, 308 nm, VWD

Injection Volume: 40 µL Sample Solvent: Water

CARBONYL COMPOUNDS

By using a HALO® C18 column with a ACN/ THF-containing mobile phase, the DNPH-derivatized carbonyl compounds are fully resolved from their isomers with high resolution.

TEST CONDITIONS

Column: HALO 90 Å C18, 2.7 μm, 4.6 x 150 mm

Mobile Phase: 55/45 - A/B

A: Water

B: Acetonitrile/THF (80/20)

Gradient: 45-58% B in 7.5 min; 58-80% B in 1.5 min; hold at 80% B for 3 min

Flow Rate: 1.5 mL/min Pressure: 355 bar Temperature: 30 °C Detection: UV 360 nm, VWD Injection Volume: 0.3 µL Sample Solvent: Acetonitrile

PEAK#	COMPOUND	
1	Formaldehyde-2,4-DNPH	
2	Acetaldehyde-2,4-DNPH	
3	Acetone-2,4-DNPH	
4	Acrolein-2,4-DNPH	
5	Propionaldehyde-2,4-DNPH	
6	Crotonaldehyde-2,4-DNPH	
7	2-Butanone-2,4-DNPH	
8	Methacrolein-2,4-DNPH	
9	Butyraldehyde-2,4-DNPH	
10	Benzaldehyde-2,4-DNPH	
11	Valeraldehyde-2,4-DNPH	
12	m-Tolualdehyde-2,4-DNPH	
13	Hexaldehyde-2,4-DNPH 2,4-DNPH = 2,4-Dinitro- phenylhydrazone i = anti, syn, isomers of the respective DPNH derivatives	

HALO® ENVIROCLASS SPECIFICATIONS TABLES

SPECIFICATIONS

BONDED PHASE	PARTICLE SIZE (µm)	SURFACE AREA (m²/g)	LOW pH/T LIMIT	HIGH pH/T LIMIT	ENDCAPPED
PFAS Analytical	2.7	135	2/60 °C	9/40 °C	Yes
PFAS Delay	2.7	90	2/60 °C	9/40 °C	Yes
PAH	2.7	135	2/60 °C	9/40°C	No

ORDERING INFORMATION

ANALYTICAL COLUMNS

PN

92844-712

DELAY COLUMNS

	Dimensions: ID x Length (in mm)	PN	
	2.1 x 50	92812-413	
S	2.1 x 100	92812-613	
PFAS	2.1 x 150	92812-713	
<u>~</u>	2.1 x 250	92812-913	
	3.0 x 50	92813-413	
	3.0 x 100	92813-613	
	3.0 x 150	92813-713	
	3.0 x 250	92813-913	

Dimensions: ID x Length (in n	nm) PN
3.0 x 50	92113-415
4.6 × 50	92114-415

ANALYTICAL COLUMNS

GUARD COLUMNS

	2.1 x 50	92842-412
	2.1 x 100	92842-612
PAH	2.1 x 150	92842-712
₫	3.0 x 50	92843-412
	3.0 x 100	92843-612
	3.0 x 150	92843-712
	4.6 x 50	92844-412
	4.6 × 100	92844-612

4.6 x 150

Dimensions: ID x Length (in mm)

2.7	μm	Guard	Columns	3-pk

2.7 pm Guara Columns o pk			
Dimensions: ID x Length (in mm)	PN		
2.1 x 5	92842-112		
3.0 x 5	92843-112		
4.6 x 5	92844-112		
Guard Column Holder	94900-001		

OTHER SMALL MOLECULE HALO® OFFERINGS FOR ENVIRONMENTAL APPLICATIONS

Below is a list of other phases that accomplish complex separations for environmental needs as well as many other applications of interest for small molecule separations.

SMALL MOLECULE

BONDED PHASE	FEATURES AND BENEFITS
AQ-C18	 Ideal for mixtures of polar and non-polar solutes High retentivity of C18 with alternate selectivity 100% aqueous compatible
C18	 Universal phase for acids, bases and neutral solutes Excellent stability at low to mid mobile phase pH Wide range of published literature applications
HILIC	 Ideal for polar analytes Alternate mode to reversed-phase modes Can be used in HILIC and normal-phase modes
C8	 Ideal for broad range of analytes Less hydrophobic (less retentive) than C18 Better ion-pair applications than C18
ES-CN	Ideal for polar analytesAlternate selectivity to alkyl phases100% aqueous compatible
PHENYL-HEXYL	 Ideal for separating aromatic compounds using pi-pi interactions Alternate selectivity to alkyl phases Also available with 160 Å pores for peptide mapping
BIPHENYL	Ideal for aromatic (pi-pi) compoundsAlternate selectivity to alkyl phases100% aqueous compatible
PFP	 Ideal for aromatics and electron-rich compounds Alternate selectivity to alkyl phases Useful in RPLC and HILIC modes
RP-AMIDE	 Ideal for basic compounds (alcohols, acids, phenols, catechins) Alternate selectivity to alkyl phases 100% aqueous compatible
PENTA-HILIC	 Ideal for polar compounds poorly retained in RPLC Alternate selectivity for HILIC mode Excellent peak shape for basic compounds in HILIC mode
C30	 Ideal for hydrophobic, long chain, structurally related isomers Alternate alkyl phase with high shape selectivity 100% aqueous compatible

