Abstract

Peptide mapping is a critical competency and technique for both research and development and for quality assurance and product release for many new biopharmaceuticals including peptide drugs, monoclonal antibody drugs and antibody-drug conjugates (ADCs). New 2-µm superficially porous columns, capable of pressures up to 1000 bar, can deliver high resolution /peak capacity separations, and can be used at temperatures up to 60 °C. Moreover, a variety of mobile phase additives include trifluoroacetic acid (TFA), ammonium formate/formic acid buffers and a new additive, difluoroacetic acid (DFA), can be applied for effective development and optimization of rugged and robust separations of complex enzyme digests.

We will demonstrate the usefulness of these columns and additives in the development of peptide mapping separations, and will offer a stepwise method development and optimization strategy for such separations.

HALO[®] 2 Peptide ES-C18

Shell with 160 Å pores

Designed for:

- Peptide mapping (analysis of enzyme digests) for characterization and quality monitoring of
- synthetic protein and antibody drugs Analysis of therapeutic peptides and peptide biomarkers (protein surrogates)

Carbon Load: Surface Area: Max. Temp.

Attributes

Bonded phase:

Endcapping:

di-isobutyloctadecylsilane None 4% 65 m²/gram 60 °C at pH 1 to 3

Typical Peptide Mapping Conditions and

Desirable Mobile Phase Additive Properties

Typical Conditions for RPLC Separations of Peptides

- 150 or 250 mm C18 column
- Mobile phase A: water with 0.02– 0.2% (v/v) additive
- Mobile phase B: CH₃CN with same % additive or 10–30% lower than in A solvent
- Temperature: 30 to 60 °C
- Flow rate set so that linear velocity is ~2 mm/sec
- Initial % CH₃CN: \leq 5%
- Final % CH₃CN: 40–60%
- Gradient slope: ranges from 0.1% to 2% CH₃CN per min.
- Gradient time: can vary from 30 to 240 min.

Desirable properties for additives

- Very high purity, quality, stability and reproducibility
- Low UV absorbance with acceptable baselines and blank
- Ability to provide good retention and symmetrical peak shapes for acidic, basic and zwitterionic analytes
- Volatile
- Acceptably low or no suppression of LC-MS signal
- Miscible with water and organic modifiers

Parameter Organic modified Mobile phase concentration Gradient steepnes Flow rate

Pressure

- phase additives
- HCOOH (20 mM)
- TFA (10 mM)
- DFA (10 mM)
- Mobile Phase A: water with additive
- Column Temperature: 60 °C
- Gradient: 2 to 47% CH₃CN/water
- Flow Rate: 0.3 mL/min
- Instrument: Shimadzu Nexera
- Instrument dispersion: 15.1 μL²

Sample:	Enolase		
Column:	HALO 2		
Flow:	0.3 mL/		
Injection vol.:	1µL		
Mobile Phase A:	10 mM		
Mobile Phase B:	10 mM I		
Gradient:	2–47% l		
UV Detection:	220 nm		
Data Rate:	10 Hz		
Response Time:	0.05 s		

Excellent for both fast and high resolution **UHPLC** separations

- High peak capacity Rugged, reliable performance
- Extremely stable up to 60°C at low pH

Practical Method Development and Optimization for UHPLC and HPLC Separations of Peptides for Peptide Mapping Analyses Using Different Mobile Phase Additives <u>Thomas J. Waeghe¹</u>, Benjamin Libert², Stephanie A. Schuster², and Barry E. Boyes²

¹MAC-MOD Analytical, Inc., 103 Commons Court, Chadds Ford, PA 19317; ²Advanced Materials Technology Inc., Wilmington, DE 19810

Parameters That Affect Peptide Reversed-Phase Gradient Separations

	Determined by	Impacts performance
	 Most labs choose acetonitrile for viscosity, mass transfer, efficiency reasons, UV transparency, ionization efficiency in MS 	 Peak width Selectivity Retention Peak capacity
	 UV transparency LC-MS sensitivity (S/N) Column stability at pH and temperature 	 Peak shape Peak width Loading (dynamic range) Selectivity LC-MS signal
	 User experience Sample complexity Experimentation and optimization software 	SelectivityPeak capacityPeak height
9	 Analyte requirements (recovery, stability) Column stability requirements Flow rate (thermal heating) Instrument capability and pressure limit 	 Selectivity Recovery Analysis time Peak width Peak capacity
	 User choice Column and Instrument pressure limits Column particle morphology and diameter 	SelectivityPeak capacity
	 Packing particle size Column length Flow rate Column temperature 	RetentionSelectivity

LC-MS Separations of Enolase Tryptic Digest Using Different Mobile Phase Additives

Assessment of LC-UV and LC-MS Performance With Various Mobile Phase Additives

 Experiments were carried out using a 2.1 x 100 mm, HALO 2 Peptide ES-C18 column with the following mobile – NH₄COOH/HCOOH (10 mM each)

Mobile Phase B: CH₃CN with additive

Traditional and New Mobile Phase Additives for Peptide and Protein RPLC Separations

Additive Property	Formic Acid	Acetic Acid	TFA	DFA	
pK,	3.75	4.75 0.95		2.0	
Boiling Point	100.8 °C	118.1 °C 72.4 °C		133 °C	
% ionizedat 10 mM	13%	4%	99%	65%	
UV Cutoff (nm)	220 +	230 +	205	205	
нн	н Н	°н г−-	F C H	н Е	
Formic Acid	Aceti Acid	ic Trifl I	uoroacetic Acid	Difluoroacetic Acid	

Method Development Approaches for Peptide Mapping Separations

Systematic Approach using **Computer Simulation (DryLab® 4)**

Optimization was carried out to identify a robust gradient time and temperature combination for a run time < 40 minutes

LC-UV Chromatograms for Gradient Input Runs at Two Temperatures For DryLab Input

LC-UV Separations of Enolase Tryptic Digest Using Different Mobile Phase Additives

DFA, TFA and NH₄COOH/HCOOH give narrow peaks, similar retention but different selectivities for peptide mapping

- Column
 - HALO 2 Peptide ES-C18 **2.1 x 100 mm, 2 μm**
- Mobile Phase
 - A Solvent: 0.1% DFA in water
 - B Solvent: 0.1% DFA in CH₃CN
 - $\Phi_{initial}$: 2% B
 - Φ_{final} : 50% B
- Column Temperatures – 30 and 60 °C
- Gradient Times
- 30 and 60 min.
- 45-min x 50 °C run used for peak matching

Total-ion Chromatogram Showing Enolase Tryptic Digest LC-MS Extracted-Ion Chromatograms **Fragments Obtained Using Near-Optimum Conditions** for Gradient Input Runs at Two Temperatures Source Type: Capillary Temp (C Source Heater Temp (C) Sheath Gas Flow (): 35.00 60 min Aux Gas Flow (): OSITIVE POLARITY 60 °C Source Voltage (kV): ource Current (uA): S-Lens RF Level (%) FTMS Full Micro Scans: FTMS Full Max Ion Time (ms): 50.00 Data-Dependent Acquisition Setting Scan Event Details: 1: FTMS + positive high res=30000 (200.0 - 2000.0)Collision Voltage = 0.0V : ITMS + p norm Dep MS/M 60 min (110.0-2000.0) Most intense ion from (1) **30** °C Activation Type: CI Min. Signal Required: 500.0 solation Width: 4.00 Normalized Coll. Energy: 35. efault Charge State: ctivation Q: 0.250 ctivation Time: 30.000 8 8 8 8 8 26813 2.687 2.687 26813 2.687 2.687 26813 2.687 2.687 215.47 11.510 17.510 15.463 17.510 17.510 15.463 17.510 17.510 215.47 17.510 17.510 215.47 17.510 17.510 215.463 24.719 24.719 215.463 24.719 24.2463 21.543 21.543 24.719 21.543 21.543 24.719 21.543 21.543 24.719 21.543 21.543 24.719 21.543 21.13 21.543 21.543 21.13 21.543 21.544 51.545 51.545 21.545 51.545 51.545 Number of Scan Events: 6 Shimadzu Nexera UHPLC Sample Column: Flow: Thermo Orbitrap Velos Pro ETD HALO 2 Peptide ES-C18, 2,1 x 100 mm, 2 µm MS 0.3 mL/min Mobile Phase A: 0.1% (v/v) DFA in water Mobile Phase B: 0.1% (v/v) DFA in CH₃CN 4–40% CH₂CN in 18.34 min. Column temp.: UV Detection: Data Rate: 220 nm 10 Hz Response Time: 0.05 s

For LC analysis conditions, see panel {

Input Data for DryLab Software and **2-D Resolution Map With Optima**

Peptide Identification Using Proteome Discoverer Software

Confidence	Single Letter Amino Acid Sequence	RT [min] Sequest HT	Modifications	# PSMs	# Missed Cleavages	Theo. MH+ [Da]	XCorr Sequest HT	ΔM [ppm] Sequest HT
High	TGAPAR	1.99		1	0	572.31509	1.85	-1.32
High	ANIDVK	5.22		1	0	659.37227	1.99	-2.06
High	HLADLSK	5.59		2	0	783.43593	2.87	-0.89
High	IATAIEK	6.32		1	0	745.44543	2.26	-1.14
High	IGSEVYHNLK	7.76		2	0	1159.6106	2.98	0.04
High	DGKYDLDFKNPNSDK	8.46		3	2	1755.81842	5.11	-0.7
High	LNQLLR	8.75		2	0	756.47265	2.01	1.28
High	TFAEALR	8.94		1	0	807.43593	2.06	-1.23
High	YDLDFKNPNSDK	9.13		1	1	1455.67505	3.81	-0.89
High	DGKYDLDFK	9.22		2	1	1100.52587	2.52	-1.5
High	KAADALLLK	9.97		2	1	942.59824	2.61	-0.38
High	YDLDFK	10.10		1	0	800.3825	1.74	-1.28
High	GNPTVEVELTTEK	10.29		1	0	1416.72167	3.57	-0.73
High	VNQIGTLSESIK	10.68		2	0	1288.71071	3.67	-1.3
High	SIVPSGASTGVHEALEMR	10.76	1×Oxidation [M17]	1	0	1856.91709	4.23	-0.29
High	IEEELGDNAVFAGENFHHGDK	11.36		2	0	2328.05273	4.73	-2.91
High	AAQDSFAAGWGVMVSHR	11.71	1×Oxidation [M13]	1	0	1805.83878	4.72	-1.41
High	SIVPSGASTGVHEALEMR	12.17		2	0	1840.92217	4.22	-0.27
High	IEEELGDNAVFAGENFHHGDKL	12.70		1	1	2441.13679	5.34	-0.91
High	NVNDVIAPAFVK	13.40		2	0	1286.71031	2.67	-1.51
High	IGLDCASSEFFK	13.60	1×Carbamidomethyl [C5]	1	0	1373.64058	3.78	-0.46
High	AAQDSFAAGWGVMVSHR	13.63		1	0	1789.84386	5.28	-0.45
High	TAGIQIVADDLTVTNPK	14.31		2	0	1755.9487	4.97	0.18
High	LGANAILGVSLAASR	15.02		1	0	1412.82199	4.57	-1.33
High	AVDDFLISLDGTANK	15.40		3	0	1578.80098	5.83	-0.48
High	WLTGPQLADLYHSLMK	16.89	1×Oxidation [M15]	1	0	1888.96258	4.8	-1.3
High	WLTGPQLADLYHSLMK	18.55		2	0	1872.96767	5.32	-0.18
High	SGETEDTFIADLVVGLR	19.42		1	0	1821.92288	6.42	-0.33
High	RYPIVSIEDPFAEDDWEAWSHFFK	20.64	0 3 5 0 4 6 3 10 3 6 0 4 6 3 6 0 7 6 3 6 0 7 6 3 6 0 7 6 3 6 0 7 6 3 6 6 7 7 6 9 7 6 3 6 6 7 7 6 7 7 6 7 7 6 7 7	1	1	2984.38898	7.39	-1.18
High	YPIVSIEDPFAEDDWEAWSHFFK	21.51		2	0	2828.28787	5.46	-0.78
High	YGASAGNVGDEGGVAPNIQTAEEALD LIVDAIK	24.66		1	0	3257.61721	4.97	-0.88
Data Set was genera	ated using the 30-min, 60 °C Xcalibur software r	aw file			PSM = Peptide Spectrum Match	XCorr = Cross Correlation Factor		

macmoc

Presented at EAS 2016

Recommended Method Development Strategies for RPLC-UV and RPLC-MS of Protein Enzymatic Digests

Systematic Approach (DryLab)

- 1. Select desired column geometry.
- 2. Choose initial flow rate based on column ID. 3. Select two different gradient times varying
- by 2- or 3-fold. 4. Select two column temperatures varying by
- 20-40 °C. 5. Set gradient range of 0–5 to 60% CH₃CN or
- 0–5 to 50% CH₃CN. 6. Carry out gradient runs at T1 and T2 with two different gradient times.
- For example, 30 and 60 min. at 30 and 60 C. Carry out an additional gradient run at intermediate temperature and gradient time For example, 45 min. at 45 C.
- Enter RTs and areas into DrvLab software. Note: Peak matching can be tricky and difficult
- 9. Compare the predicted intermediate gradient run vs. actual intermediate run to
- assess peak matches. 10. Determine whether there are any optimum regions of robust resolution in the 2-D resolution map.
- . Optimize linear gradient in gradient editor or choose a two or three segment gradient to find optimum conditions

Wang, Carr et al. Approach*

- 1. Choose desired column geometry. 2. Set flow rate for column max. pressure or 75% of max. pressure.
- 3. Set Φ_{final} so that last peak of interest elutes at very end of gradient.
- 4. Choose temperature based on column stability and "fluidity" 60C?
- 5. For example, use 2–50% CH₃CN for initial
- 6. Set gradient time for maximum allowable time.
- . Calculate %B at elution of last peak of interest (using RT, %B/min, t_o, and t_D).
- 8. Rerun sample with the 2–X %B limit for gradient time corresponding to that final

* Xiaoli Wang, Dwight Stoll, Adam Schellinger, and Peter Carr Peak Capacity Optimization of Peptide Separations in Reversed hase Gradient Elution Chromatography: Fixed Column Format Anal. Chem. 2006, 78, 3406-3416

Summary and Conclusions

- A sample of enolase was digested with trypsin, and was analyzed using gradient UHPLC using a 100-mm HALO 2 Peptide ES-C18 columr
- Various mobile phase additives were compared in terms of LC-UV and LC-MS signal, peak shape, peak width and retention.
- Difluoroacetic acid (DFA) offers peak shape, peak width and retention comparable to TFA and ammonium formate/formic acid, but with much better LC-MS ionization efficiency (signal-to-noise).
- Systematic method development for optimizing peptide separations allows one to find temperature and gradient time combinations for robust, effective analyses.
- HALO 2 Peptide ES-C18 columns facilitate high resolution peptide mapping of complex tryptic digests with short analysis times (20–30 minutes).

Acknowledgements: Supported in part by NIH Grant GM116224 (BEB). **Opinions expressed are solely those of the authors. HALO and Fused-**Core are registered trademarks of Advanced Materials Technology, Inc.¹⁵