
IC50	Determina.on	for	GDA	

IC50	values	were	determined	with	G	at	0.5	µM	under	normal	
microplate	assay	condi<ons	(30	min	reac<on).		
AICA	showed	modest	inhibi<on,	2,6-diaminopurine	(2,6-DAP)	
showed	no	inhibitory	ac<vity,	while	the	an<viral	Acyclovir	
showed	very	mild	inhibitory	ac<vity.	
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	 	 	 Guanine	 deaminase,	 also	 known	 as	 “nedasin	 “	 or	 “cypin”,	 catalyzes	 the	 purine	 catabolic	
commitment	step	from	guanine	(G),	through	xanthine	(X),	to	the	elimina<on	product,	uric	acid.	
In	 rabbit,	 mouse	 and	 human,	 the	 enzyme	 appears	 to	 exist	 predominantly	 cytoplasmic	 as	 a	
homodimer,	with	cataly<c	domains	for	the	Zn+2-dependent	hydroly<c	deamina<on	of	guanine	to	
xanthine	plus	ammonia.	Genomic	details	for	the	GDA	gene	are	mapped	for	several	species,	and	
expression	 profiling	 in	 certain	 <ssues	 and	 organisms	 has	 been	 ini<ated,	 although	 the	
complement	of	various	transcript	variants	is	incomplete.		
	

•  Structure:			c.	50	kDa	subunits	with	sequences	that	vary	at	internal	and	terminal	sites,	due	to	
exon	selec<on;	at	least	4	significant	forms	predic<ng	proteins	of	various	lengths	are	known.		

•  Interac<ons:		tubulin,	snapin,	and	the	post-synap<c	domain	protein	95	(PSD-95).		
•  PSD-95	binding	 is	 through	 the	PDZ	binding	mo<fs	present	at	 the	C-terminus	of	 the	dimeric	

structure.	
•  Sequence	variants	occur	mostly	at	the	protein	binding	domains,	although	minor	variants	lack	

the	deaminase	cataly<c	site.	
•  In	mammalian	brain,	high	enzyma<c	levels	are	in	telencephalic	brain	regions;	very	low	levels	

in	white	maYer	and	cerebellum;	moderate	levels	in	liver	and	certain	other	organs.	low	levels	
in	 plasma/serum,	 notably	 altered	 by	 liver	 dysfunc<on.	 The	 S-	 transcript	 is	 predominant,	
coding	for	a	51	kDa	monomer.	

•  Actual	role	of	guanine	deaminase	in	specialized	organ	metabolism	and	synap<c	physiology	is	
uncertain,	 and	 rela<vely	 liYle	 is	 known	about	 the	enzyme	 characteris<cs	outside	of	 rabbit,	
with	 significant	 detail	 available	 detail	 on	 gene	 expression	 paYerns,	 but	 not	 at	 the	 protein	
level.	 Available	 protein	 expression	 surveys	 have	 suggested	 extensive	 post-transla<onal	
modifica<ons,	that	have	not	yet	been	detailed	with	certainty.	

•  Few	 useful	 inhibitors	 have	 been	 described	 for	 the	 enzyme,	 and	 the	 biochemical	
pharmacology	is	confused,	in	part	due	to	poorly	characterized	enzyme	proper<es.	
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•  Previous	enzyme	assays	are	problema<c,	using	either	spectrophotometry	(spectral	shic	of	G	to	X,	or	
ammonium	 capture),	 or	 coupled	 fluorometric	 enzyme	 assay	 of	 X	 (via	 Xanthine	 Oxidase	 produced	
H2O2),	with	aYendant	problems	in	kine<c	parameter	es<ma<on.				

•  Available	 assays	 have	 poorly	 characterized	 analy<cal	 specificity,	 reproducibility	 and	 sensi<vity,	
genera<ng	broad	reported	ranges	for	basic	kine<c	parameters	(Km	values	and	specific	ac<vi<es	vary	
widely),	and	inhibitor	characteris<cs.		

To	measure	<ssue	enzyme	 levels,	 follow	purifica<on	processes,	define	enzyme	kine<cs	and	effects	of	
inhibitors,	highly	specific	and	sensi<ve	methods	would	be	useful.	Direct	genera<on	of	product	xanthine	
uses	fast	separa<on	of	highly	polar	purine	metabolites	by	a	new	reversed-phase	material,	HALO®	AQ-
C18.	 High	 sensi<vity	 and	 selec<ve	 detec<on	 uses	 selected	 reac<on	 monitoring	 (SRM)	 LC-MS/MS.	
Analy<cal	benefit	was	assessed	across	a	 range	of	 substrate	concentra<ons,	 in	 the	presence	of	known	
and	 poten<al	 compe<<ve	 inhibitors.	 The	 features	 of	 the	 assay	 are	 explored	 for	 the	 only	 two	 known	
substrates	 for	 guanine	 deaminase,	 Guanine	 and	 8-Azaguanine.	We	 have	 also	 ini<ated	 comparison	 of	
na<ve	GDA	from	bovine	brain	and	liver	<ssue,	to	recombinant	bacterial	expressed	human	GDA.	
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Peak	Iden<<es	
1:	5-Amino-imidazole-4-carboxamide	(AICA)	
2:	Azepinomycin	
3:	Guanine	-	Substrate	
4:	2,6-Diaminopurine	(2,6-DAP)	
5:	Uric	Acid	
6:	Xanthine	-	Product	
7:	8-Azaxanthine	
8:	8-Azaguanine	
9:	Allopurinol	

LC	Condi<ons	
Columns:	2.1	x	100	mm	
Mobile	Phase:	0.1%	Formic	Acid	
Flow	Rate:	0.5	mL/min	
Temperature:	35	°C	
Detec<on:	UV	254	nm	
Injec<on:	1	µL	
Instrument:	Shimadzu	Nexera	

HALO	90Å,	AQ-C18,	2.7	µm	

Compe<tor	(B)	2.7	µm	SPP	Aqueous	C18	

Compe<tor	(A)	2.6	µm	SPP	Aqueous	C18	

A	selec<on	of	C18	phases	stable	in	
100%	Aqueous	condi<ons	were	
screened.	The	HALO	90Å,	AQ-C18,	2.7	
µm	column	was	chosen	for	its	ability	
to	resolve	the	highly	polar	purine	
metabolites	and	inhibitors	of	interest.		
Under	the	current	use	condi<ons,	the	
AQ-C18	column	is	stable	for	many	
thousands	of	samples,	including	<ssue	
homogenates.	

Panels	A-D	represent	steps	taken	for	selec<ve	detec<on	of	the	
enzyme	reac<on	product,	xanthine	and	8-azaxanthine.	Panel	A	
shows	a	chromatogram	of	a	10	pmol	injec<on	of	X	or	AzX	using	
the	extracted	ions	from	150	to	152	m/z.	Panel	B	shows	the	
spectra	with	xanthine	and	azaxanthine	precursor	ions		[M−H]−	
at	151	m/z	(X)	or	152	(AzX)	chosen	for	fragmenta<on.	Panel	C	
shows	the	extracted	ion	chromatograms	centered	at	dominant	
fragment	ions,	and	Panel	D	shows	the	product	ions	108	m/z	
monitored	for	X	and	109	m/z	for	AzX.	
	

Xanthine	Theore<cal	Mass	[m/z]		
152.033	Da	monoisotopic,	[151.025	m/z	(-)	]	

8-azaxanthine		Theore<cal	Mass	[m/z]	
	153.029	Da	monoisotopic,	[152.021	m/z	(-)]	

	

ITMS	[50-200	m/z]	

0.875 1.000 1.125 1.250 
0 

50000 

100000 

150000 

200000 

260000 
10pmol	Xanthine	inj.	XIC	(-)	

150-152	m/z	

Precursor	Ion	151	m/z	 ITMS	[106.00-110.00	m/z]	

0.875 1.000 1.125 1.250 
0 

5000 

10000 

15000 

20000 

26000 
XIC	(-)	
107.8-	
108.2	m/z	

Product	Ion	108	m/z	

55.0 75.0 100.0 125.0 150.0 

0 

20 

40 

60 

80 

100 

120 
108.01


m/z 

% 

120.0 140.0 160.0 180.0 
0.0 

5.0 

10.0 

15.0 

20.0 

25.0 
28.0 

151.01


m/z 

% 

0.875 1.000 1.125 1.250 

0 

10000 

20000 

30000 

40000 
ITMS	[106.00-110.00	m/z]	

XIC	(-)	
108.8-	
109.2	m/z	

Product	Ion	109	m/z	

55.0 75.0 100.0 125.0 150.0 

0 

20 

40 

60 

80 

100 

120 
109.08


124.01


m/z 

% 

0.875 1.000 1.125 1.250 

0 

50000 

100000 

150000 

200000 
ITMS	[50-200	m/z]	

XIC	(-)		10pmol	8-Azaxanthine	inj	
151-	
153	m/z	

Precursor	Ion	152	m/z	

120.0 140.0 160.0 180.0 
0.0 

5.0 

10.0 

15.0 

20.0 

25.0 
28.0 

151.99	

m/z 

% 

A	 B	 C	 D	

SRM	MS^2		
151.00		
@cid30	

SRM	MS^2		
152.00		
@cid30	

Selec.ve	Detec.on	of	Enzyme	Reac.on	Products	Using	SRM	in	the	Ion	Trap	

Shimadzu	Nexera	
HALO®	AQ-C18	2.1x75mm	2.7µm	90Å,	or	HTP	assay	using	2.1	x	30	mm.	
A=0.1%Formic	Acid 	B=Acetonitrile	
0.5ml/min,	35°C,	265nm,	MTP,	autosampler	25°C	
Gradient:	0%B	0-1.5min	to	70%B	@1.7-2.2min	to	0%B	@2.3-4.2min	
Thermo	Orbitrap	Velos	Pro	ETD	
MS	Run	Time	(min):	1.7;	divert	first	0.8	min	from	MS	source	
ITMS	(-)	0.7	to	1.7min	
HESI	Source	Type;	Capillary	350°C;	Heater	325°C;	Sheath	Gas	40;	Aux	Gas	Flow	10	
ITMS	Full	AGC	50K;	ITMS	SIM	AGC	100K;	ITMS	MSn	AGC	50K	
Source	Voltage	(-kV)	2.70;	Ion	Trap	Full	Max	Ion	Time	(ms)	200;		
Segment	(SEG)	Informa<on/Scan	Event	Details:	
ITMS	-	c	low		injrf=70.0	·(151.00000)->oS(98.00-118.00)	
MS/MS:		AT			CID	CE	30.0%			Q	0.350			Time	10.000			IsoW	1.5,	CV	=	0.0V	
Assay	Condi<ons	
50	mM	Bicine	pH	7.8,	5	µg/mL	BSA,	varying	Guanine	or	8-azaGuanine.	
Reac<on	at	25°C	for	>15	minutes,	typical	volume	of	100	µL	
Stop	Reac<on	by	addi<on	of	0.1	volume	of	10%	Formic	Acid.	
All	purine	reagent	stocks	are	maintained	in	15	mM	NaOH/0.15	mM	MgCl2	un<l	dilu<on.	
Enzyme	incuba<ons	are	conducted	in	standard	96	well	reac<on	plates,	which	are	directly	loaded	in	
the	Nexera	Autosampler,	for	LC/MS	analysis	of	reac<on	products.	

Enzyme	ac<vity	is	linear	over	4	orders	of	dilu<on,	in	this	example,	an	enzyme	concentra<on	of	1	in	
12,000	(50	mU/rx),	X	produc<on	is	linear	with	incuba<on	<me	to	300	minutes,	consuming	less	than	
10%	of	substrate	at	100	uM	G.	Observed	for	10	uL	injec<on;	LOQ	for	X	<	1	fmol	and	linearity	to	>	10	
pmol	injected.	
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Conclusions	

Deconvolu<on	resulted	in	a	subunit	MW	of	50866.	This	is	193	Da	from	the	predicted	mass	using	genomic	
data,	51059,	for	the	S	isoform	of	the	enzyme.	Chromatograms	and	SDS	PAGE	show	high	enzyme	purity.	
Column:	HALO	1000	Å	Diphenyl,	2.7	µm,	2.1	x	150	mm		QExac<ve	HF	and	Nexera	X2	
A:	0.1%	DFA	B:	0.1%	DFA	1:1	nPropanol:ACN			0.25	mL/min	30%B	0-20min	
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Km	values	for	bovine	brain	and	liver	are	similar,	0.286	±	
0.035(SEM)	µM	and	0.31	±	0.03(SEM)	µM	respec<vely,	and	
are	much		lower	than	literature	values.	This	emphasizes	the	
importance	of	highly	specific	and	sensi<ve	LC/MS	enzyme	
assays.	The	Km	values	for	bovine	<ssues	are	much	lower	
than	the	assayed	recombinant	human	enzyme,	Km	of	6.2	±	
0.2(SEM)	µM.	Vmax	of	bovine	brain	compares	favorably	
with	literature	reports	at	1.36	±	0.04(SEM)	µmole/min/mg	
but	differs	significantly	from	the	recombinatnt,	5.2	±	
0.2(SEM)	µmole/min/mg.	AzG	is	a	much	poorer	substrate.	

A	sensi<ve	and	specific	LC/MS	approach	to	study	enzyme	kine<cs	is	demonstrated.	Results	differ	from	
literature	reports	that	use	spectrophotometric	methods	highligh<ng	the	importance	of	the	assay’s	
specificity.	The	HALO®	AQ-C18	phase	provides	robust	separa<on	in	100%	aqueous	condi<ons	for	these	
highly	polar	purines.	High	purity	enzyme	from	<ssue	exhibited	much	lower	Km	than	bacterial	expressed	
recombinat	enzyme	and	a	subunit	mass	that	diverges	from	DNA	derived	value.		
	
This	work	was	supported	in	part	by	NIGMS[GM116224	to	BEB].	The	content	is	solely	the	responsibility	of	the	
authors	and	does	not	necessarily	represent	the	official	views	of	the	Na<onal	Ins<tute	of	Health	
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