

Opportunities for Developing Improved Separation Methods with Modern UHPLC Instruments

Peter Pellegrinelli

Stephanie Schuster, Conner McHale

Advanced Materials Technology, Inc.

Improved Instrumentation

HALO

- HPLC and UHPLC systems have improved
 - Lower internal volumes
 - Higher back pressure capabilities
 - High flow rate accuracy and repeatability
 - Less carryover for each injection
- HPLC technology will continue to evolve
 - HPLC column technology must improve as well

Switching Particle Type FPP vs SPP

HALO

J.J. DeStefano, T.J. Langlois, & J.J. Kirkland, *J. Chromatogr. Sci.*, 2008, 46(3), 254-260

Effect of Particle Size and Type

 $\begin{array}{rcl} \mbox{Columns:} & 4.6 \ x \ 50 \ mm \\ & 5 \ \mu m \ FPP \ C18 \\ & 3.5 \ \mu m \ FPP \ C18 \\ & 1.8 \ \mu m \ FPP \ C18 \\ & 2.7 \ \mu m \ HALO \ C18 \\ \hline \ Solute: \ naphthalene \\ \ Mobile \ phase: \ 60\% \ ACN/40\% \ water \\ Temperature: 24 \ ^C \end{array}$

van Deemter Equation

- H = height equivalent to theoretical plate
- A = eddy diffusion term (particle size and how well bed was packed) 30 40% smaller
- **B** = longitudinal diffusion term **25 30% smaller**
- **C** = resistance to mass transfer term (kinetics of the analyte b/w mobile phase and stationary phase) μ = mobile phase linear velocity (L/t_o)

$$H = A + \frac{B}{\mu} + C\mu$$

Reduced ID Columns & Particle Sizes

HALO

- More Sensitivity from conventional UHPLC Systems
- ✓ Higher Ionization Efficiencies from LCMS systems
- ✓ Reduced Solvent Consumption compared to larger ID columns
- ✓ Reduced back pressure
- Easy to Implement microflow solution
- ✓ Robust Hardware that requires less care

Getting the Most from a Column

HALO

- Reduce any extracolumn dispersion
 - Pre-column tubing
 - Post-column tubing
 - Detector/Mass

Getting the Most from a Column

Standard Plumbing - Gradient k* = 2

Increased Efficiency Demonstrated Using Fat Soluble Vitamins

HALO

Sharper peaks and increased resolution with the HALO® C30 column!

PEAK IDENTITIES:

- Retinyl acetate (A)
 Delta tocopherol (E)
- 3. Ergocalciferol (D2)
- 4. Cholecalciferol (D3)
- 5. Alpha tocopherol (E)
- 5. DL-alpha-tocopherol acetate (E)
- 7. 2,3-trans-phylloquinone (K)

Isocratic: 100% Methanol Wavelength: 280nm Injection: 2 μL Temperature: 30 °C Flow Rate: 1.5 mL/min Columns: 4.6 x 150 mm

Increased Speed & Reduced Mobile Phase Consumption

HALO

Decreasing ID to Improve Sensitivity

HALO

Increased Sensitivity of OTC Medicines

HALO

With extracolumn dispersion minimized, the 1.5 mm ID column shows taller peaks compared to 2.1 mm ID column providing greatest benefit for minor components.

PEAK #	COMPOUND
1	Phenylephrine
2	Acetaminophen
3	Caffeine
4	Doxylamine
5	Guiafenesin
6	Aspirin
7	Salicylic Acid
8	Dextromethorphan

TEST CONDITIONS:

Mobile Phase A: Water/0.15% TFA Mobile Phase B: ACN/0.1% TFA Gradient: 5-50 %B in 8 min Flow Rate: 0.2 mL/min for 1.5 mm 0.4 mL/min for 2.1 mm Pressure: 425 bar/1.5 mm 470 bar/2.1 mm Temperature: 35 °C Injection Volume: 0.5 µL Detection: UV 280 nm, PDA Instrument: Shimadzu Nexera X2

2.1 vs 1.5mm ID OTC Data

HALO

Solvent Savings from a 4.6 to 1.5 ID

HALO

advancedmaterialstechnology

Increased MS Response of Peptides

HALO

Increased MS Response of Peptides

HALO

🥺 advancedmaterialstechnology 🛛

Intact Trastuzumab on a HALO 1000 Å Diphenyl

HALO

Increased Response of Vitamin D Metabolites

HALO

USP Monograph for Itraconazole – Modified

HALO

USP Monograph for Itraconazole: Mobile Phase Reduction

HALO

For 10 injections:

HALO

Summary

- Optimization through column technology can be simple during method development
 - Switching particle type or size while keeping phase chemistry
 - Decreasing column length/ID
 - Changes to the method
- New column tech comes with multiple perks
 - Increased sensitivity
 - Faster run times

dmaterialstechnology

- Increased solvent savings
- Less sample injected

HALO

Acknowledgements

- AMT
 - Stephanie Schuster
 - Conner McHale
 - Stephanie Rosenberg
- Richard Henry

HALO

Questions

halocolumns.com

3521 Silverside Road, Suite 1-K Quillen Building Wilmington, DE 19810

(302) 992-8060

