Evaluation of Positively Charged Surface Stationary Phases for Improved

Chromatographic Separations of Basic Analytes in Small Molecules and Peptides

advancedmaterialstechnology ISC 2024 Liverpool, UK

William Miles, Benjamin Libert, Conner McHale, Peter Pellegrinelli, <u>Harry J. Ritchie</u> Advanced Materials Technology Inc., Wilmington, DE

INTRODUCTION

Problem: basic compounds become charged at low pH leading to tailed peak shape as sample load is increased under typical low ionic strength reversed-phase LC and LCMS conditions

Solutions: To improve peak shape, there are a few options such as adding an ion pair reagent or adding a buffer, but these options are not always 100% compatible with MS detection. Specifically, trifluoroacetic acid (TFA) reduces MS ionization efficiency and phosphate buffer is not MS compatible. Another solution is to use a stationary phase with a positive charged ligand. The HALO[®] PCS (positive charged surface) product family incorporates a positively charged ligand in addition to a traditional stationary phase on superficially porous silica particles. This stationary phase enables improved peak shape, sample loading, and better impurity analysis.

HALO[®] PCS C18 Compared to Competitor Charged C18

2.1 x 100 mm, A: Water, 0.1% Formic Acid; B: Acetonitrile, 0.1% Formic Acid; Isocratic as listed; Flow Rate: 0.4 mL/min; Back Pressure: 238 bar; Temperature: 35 °C; Injection: 1.0 μL Sample Solvent: 70/30 Water/ACN; Wavelength: PDA, 254 nm, LC System: Shimadzu Nexera X2

- Better tailing and higher efficiency is observed with HALO[®] PCS C18 for the basic compound (peak 2)
- Peaks 3 & 4 (acids) show symmetrical peak shape with HALO [®] PCS C18

Improved Impurity Analysis with HALO[®] PCS Phenyl-Hexyl

2.1 x 100 mm, A: Water, 0.1% Formic Acid; B: Acetonitrile, 0.1% Formic Acid; Isocratic as listed; Flow Rate: 0.4 mL/min; Back Pressure: 206 bar; Temperature: 35 °C; Injection: 1.0 μL Sample Solvent: 90/10 Water/ACN; Wavelength: PDA, 280 nm, LC System: Shimadzu Nexera X2

IMPROVEMENTS TO LC AND LCMS OF PEPTIDES

2.1 x 100 mm, A: Water, 0.1% Formic Acid; B: Acetonitrile, 0.1% Formic Acid; Gradient: 2-35 %B in 10 min.; Flow Rate: 0.3 mL/min; Temperature: 30 °C; Injection: 1.0 μL; Wavelength: PDA, 280 nm

PEAK IDENTITIES:

- Gradient separation of 5 variant synthetic peptides + insulin B_{ox}
- Reduced retention time and increased resolution for HALO[®] PCS C18 Peptide compared to uncharged Peptide C18
- Improved peak widths and reduced tailing in formic acid

HALO® PCS STATIONARY PHASES

- 2.7 μ m particle size with 0.5 μ m thick shell
- 90 Å pore size for small molecules and 160 Å for peptides and tryptic fragments
- Excellent peak shape and increased loading capacity for basic compounds
- 100% aqueous compatible
- UHPLC and LCMS compatible

IMPROVEMENTS TO LC OF BASIC MOLECULES

2.1 x 100 mm, A: Water, 0.1% Formic Acid; B: Acetonitrile, 0.1% Formic Acid; Flow Rate: 0.4 mL/min; Back Pressure: 242 bar; Temperature: 30 °C; Injection: 0.5 μL (31 μg) Sample Solvent: 75/25 Water/ACN; Wavelength: PDA, 254 nm, LC System: Shimadzu Nexera X2

- Peak widths are 50% smaller with HALO[®] PCS Phenyl-Hexyl
- Impurity peaks are clearly visible with HALO[®] PCS Phenyl-Hexyl since the peak shapes are so sharp, but are not visible at all on the uncharged Phenyl-Hexyl column

Fast Separation of β-Blockers

2.1 x 100 mm, A: Water, 0.1% Formic Acid; B: Acetonitrile, 0.1% Formic Acid; Gradient: 3-36% B in 5 min; Flow Rate: 0.4 mL/min; Back Pressure: 281 bar; Temperature: 30 °C; Injection: 1.0 μL Sample Solvent: 93/7 Water/ACN; Wavelength: PDA, 220 nm, LC System: Shimadzu Nexera X2

	PEAK IDENTITIES	
	1. Sotalol	7. Oxprenolol
	2. Atenolol	8. Bisoprolol
HALO 90 Å PCS C18	3. Pindolol	9. Labetalol
	4. Nadolol	10.Propranolol
	5 Motoprolol	11 Carvodilal

High Speed Peptide Analysis

HALO 160 Å PCS C18, 2.1 x 50 mm, A: Water, 0.1% Formic Acid; B: Acetonitrile, 0.1% Formic Acid; Gradient: 0-35 %B in 1.5 min.; Flow Rate: 1.0 mL/min; Temperature: 30 °C; Injection: 1.0 μL; Wavelength: PDA, 280 nm

- The highly efficient 160 Å pore superficially porous particle permits very high throughput analysis
- The example shows separation conducted in less than 2 minutes, with modest backpressure, even at moderate temperature

Improved Peak Capacity with HALO® PCS C18 Peptide

A: Water, 0.1% Formic Acid; B: Acetonitrile, 0.1% Formic Acid; Gradient: 3-50 %B in 30 min.; Flow Rate: 0.4 mL/min; Temperature: 60 °C; ; Shimadzu NexeraX2 -> diverter valve -> QExactive HF (res=240,000) MarvelXACT Post-Column Plumbing: 50 μm x 350 mm from column to diverter valve 50 μm x 350 mm from diverter valve to union 50 μm x 150 mm from grounding union to HESI I Peptide C18 2.7 μm, 2.1 x 150 mm Peak Capacity = 170

 Improved tailing factor and efficiency are obtained with HALO[®] PCS C18 when compared to a traditional uncharged C18 stationary phase for this mix of 4 tricyclic antidepressants

- Beta blockers are used for the treatment and/or prevention of heart and circulatory conditions, such as arrhythmias, heart attack, and high blood pressure
- Eleven different beta blockers are separated in under 5 minutes using a HALO[®] PCS C18 column with UV detection and a mobile phase that is MS compatible

Effect of Organic Solvent on HALO[®] PCS Selectivity

2.1 x 100 mm, A: Water, 0.1% Formic Acid; B: Specified Solvent, 0.1% Formic Acid; Isocratic at specified % B; Flow Rate: 0.5 mL/min; Temperature: 30 °C; Injection: 1.0 μL Wavelength: PDA, 230 nm, LC System: Shimadzu Nexera X2

Peak Identities:

110

Bisoprolol (beta-blocker)
Bupivacaine (local anesthetic)

HALO[®] PCS C18 Peptide 2.7 μm, 2.1 x 150 mm

Peak Capacity = 488

- Peak capacities (n_{PC}) measured with modest load (2 μg) of trastuzumab tryptic digest on a 2.1 mm ID column
- n_{PC} based on 12 ID peptides measured using extracted ions (XICs) PW_{1/2}, t_R and Δt_G for this specific sample set
- Decreased peak widths effect notable increase in peak capacity

Tryptic digest LCMS analyses to identify payload site for isolated DAR2 ADC

- Lowest tailing factor and highest plates found with HALO[®] PCS Phenyl-Hexyl compared to a charged C18 phase
- Significant improvements are observed when compared to an uncharged Phenyl-Hexyl phase

Bonded Phase	Peaks 1	and 2	Peaks 3	and 4
	Selectivity	Rs	Selectivity	Rs
PCS Phenyl-Hexyl	1.17	2.22	1.08	1.56
PCS C18	1.13	2.08	1.15	3.07
	Methanol Mobi	le Phase		
	Methanol Mobil Peaks 1	le Phase and 2	Peaks 3	and 4
Bonded Phase	Methanol Mobil Peaks 1 Selectivity	le Phase and 2 Rs	Peaks 3 Selectivity	and 4 Rs
Bonded Phase PCS Phenyl-Hexyl	Methanol Mobil Peaks 1 Selectivity 1.20	le Phase and 2 Rs 2.29	Peaks 3 Selectivity 1.25	and 4 Rs 3.95

- Changing from acetonitrile to methanol gives elution order changes for both PCS C18 and PCS Phenyl-Hexyl
- Increased selectivity and resolution are observed with PCS Phenyl-Hexyl compared to PCS C18 when run with methanol

- HIC isolated mAb with 2 vedotin-ejfv payload conjugated to enfortumab was digested with trypsin
- A single L-chain cystine site was occupied by the payload, with retention identified in the XIC, verified by MS/MS

CONCLUSIONS

- HALO[®] PCS phases improve load tolerance in formic acid vs. traditional uncharged stationary phases making PCS phases useful for analysis of less abundant impurities.
- HALO 160 Å PCS C18 exhibits favorable peak shape for peptides in weakly acidic mobile phase thus expanding the choice of mobile phase for effective LC/MS.
- HALO[®] PCS phases show symmetrical peak shape for basic, neutral, and acidic analytes.
- All HALO[®] PCS phases exhibit the speed and resolution advantages of Fused-Core[®] superficially porous particles.

INNOVATION YOU CAN TRUST – PERFORMANCE YOU CAN RELY ON

halocolumns.com