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Introduction to Oligos
• Why are oligonucleotides being analyzed?

• Oligonucleotides are being developed as drugs
• These drugs can be used to modulate gene expression

• Impurity analysis of said drugs is required for effective products
• The development of mRNA vaccines (Covid-19)

• What are the challenges of separating oligonucleotides?
• Complicated structures and sizes
• A phosphate backbone that reduces retention under RPLC
• Modifications can range broadly: phosphorothioates, lipids, sugars or 

nucleobases
• Sample stability requires suitable handling (nucleases and metals)
• Hybrid structure formation can be either intended or unwanted

Figure 1: Structure of a 2′-O-modified RNA. 
(idtdna.com) 



halocolumns.com | confidential | HALO® and Fused Core® are registered trademarks of Advanced Materials Technology. Made in the USA.

Technical Considerations for 
Oligonucleotide Separations

• Reversed-phase or ion-pairing RP HPLC methods have 
largely replaced gel electrophoretic methods for small 
(<20 nts) and medium size (<60 nts) oligo/poly 
nucleotides.

• IP-RP methods can be rapid, and with suitable choices can 
be used with online MS detection for identity and 
sequence analysis.

• Most IP-RP approaches are at pH 6-11, and often at 
elevated temperature, especially when complementary 
hybrids can be formed (internal or intermolecular hybrids).

• Hybrid formation is temperature, ionic strength and 
solvent dependent, and defined by sequence (GC vs AT 
or AU), as well as backbone (RNA vs DNA).
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Importance of High pH 
Stability

• At high pHs, native silica will be solubilized unless treated for high pH stability
• The graph measures the result of efficiency (plates) of both a standard silica and the new surface 

modified silica from AMT after stability testing.
• The pH stable phase maintained good efficiency after the stability while a standard,  silica particle 

bonded phase material, lost efficiency.
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Why Ion Pairing?

• Contemporary oligonucleotide analysis is frequently conducted using ion pair reversed 
phase chromatography (IPRP).

• TEA (triethylamine) or TEA-Acetate (TEAA) buffer is a common IPRP modifier, creating 
favorable IPRP separations.

• Phosphate buffer does not support IPRP, meaning little to no retention.
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Standard Separation with Ion Pairing

PEAK 
IDENTITIES:
1. 10 mer
2. 15 mer
3. 20 mer
4. 25 mer
5. 30 mer
6. 40 mer
7. 50 mer
8. 60 mer

Testing Conditions:
Column: HALO 120 Å OLIGO, 2.7 µm, 2.1 x 50 mm
 Mobile Phase: A: 100mM TEAA 
                           Adjusted to pH = 8.5 
                           B: ACN
Gradient:
                 Time     %B
                  0.0         5
                 10.0       11
                 11.0       11
                 11.5        0
                 16.5        0
Flow Rate: 0.5 mL/min
Back Pressure:  140 bar
Temperature: 60 ⁰C
Injection:  1.0 µL, 10µg on Column
Sample Solvent:  10mM Tris HCl/1mM EDTA pH=8.0
Wavelength: PDA, 254 nm
Flow Cell: 1 µL
Data Rate: 100 Hz
Response Time: 0.025 sec.
LC System: Shimadzu Nexera X2 
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Effects of pH on Oligonucleotides

Testing Conditions:
Column: HALO 120 Å OLIGO, 2.7 µm, 2.1 x 50 mm 
Mobile Phase: A: Refer to Chromatogram
                            B: ACN
Gradient:

Time     %B 
  0.0        5
  0.5      7.4
  3.5     10.7
  3.6       20
  4.1       20
  4.2        5
  9.0        5

Flow Rate: 0.5 mL/min
Back Pressure:  140 bar
Temperature: 60 ⁰C
Injection:  1.0 µL, 10µg on Column
Sample Solvent:  10mM Tris HCl/1mM EDTA pH=8.0
Wavelength: PDA, 265 nm
Flow Cell: 1 µL
Data Rate: 40 Hz
Response Time: 0.05 sec.
LC System: Shimadzu Nexera X2

• Five different pHs were used to evaluate how the retention of oligonucleotides differs at 
the pHs 6 and 9.5

• TEAA was used as the ion pairing reagent for each mobile phase and acetic acid was used 
to adjust the pH as specified

• The concentration of TEA was maintained at 100mM to ascertain the role that pH has on 
oligonucleotide retention

• By adjusting pH with acetic acid, we can see, retention modestly decreases as pH increases
• Around a pH of 9, it is suggested that at 60°C oligonucleotides will adopt a folded 

deprotonated state, reducing retention

Thaplyal, P., & Bevilacqua, P. C. (2014). Experimental approaches for measuring pKa's in RNA and DNA. 
Methods in enzymology, 549, 189–219. https://doi.org/10.1016/B978-0-12-801122-5.00009-X
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• Oligonucleotide sequences can change retention characteristics if 
composition differs, but base length stays the same.

• Two oligomers in this mix are the same base length, 12 mer, but are 
well resolved The difference in retention can be attributed to a 
difference in sequence which also affects mass. 

• The earlier eluting 12 mer oligonucleotide has a mass of 3588 Da 

compared to the later eluting oligomer which has a mass of 4157 Da.

Oligomer Composition Matters!

12 Mer, 3588.4 Da

12 Mer, 4157.98 Da
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• Six different oligonucleotides are 
individually separated on the HALO® 
OLIGO C18 column

• Using overlays of each injection it can be 
seen that the column has very little 
trouble separating each oligonucleotide 
under MS friendly conditions  

• Oligonucleotide base length can help 
predict retention behavior

• Base type also plays a major role in 
oligomer separations and by using the 
HALO® OLIGO C18 column even minor 
changes in base type or length can be 
separated
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HALO 90 Å, 2.7 µm

Fully Porous Particle (FPP)

Superficially Porous Particle (SPP)

SPP Technology

Brief terminology 
lesson:

FPP – Fully Porous 
Particle

TPP- Totally Porous 
Particle

SPP – Superficially 
Porous Particle

Terms associated with 
SPP – Fused-Core®, 
solid-core, core shell 
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Effects of SPP Technology
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Pore Size Effects on ssDNA 

• Baseline separation on all peaks but 6 and 7
• Reaching the limits of a 120Å pore size
• Does a larger pore size increase separation 

between peaks 6 and 7?
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Conditions:
Columns: 2.1 x 100 mm, Inert HW
Flow Rate: 0.5 mL/min
Temp: 60°C
A- 15 mM TEA/50 mM HFIP, pH 8.9
B- Acetonitrile
Gradient: Time %
 0.0 1.5
 20 6.5 

21 15
 22 15
 22.5 1.5
 30 Stop
Detection: 260 nm, 10 nm
Sample: 1 μL, 20/100 IDT @ 10ng 

(0.25% AcN/min)

PC = 55.5

PC = 105.7

PW1/2 4.2s

PW1/2 2.8s

Greater Peak Capacity for Larger Pore 
SPP: TEA/HFIP Acetonitrile 

PW1/2 6.1s

PW1/2 3.9s

𝑃𝑃𝑃𝑃 =  ∆(𝑅𝑅𝑅𝑅100 − 𝑅𝑅𝑅𝑅20)/4σ𝑎𝑎𝑎𝑎𝑎𝑎
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Conditions:
Columns: 2.1 x 100 mm, Inert HW
Flow Rate: 0.5 mL/min
Temp: 60°C
A- 15 mM TEA/50 mM HFIP, pH 8.9
B- Acetonitrile
Gradient: Time %
 0.0 1.5
 40 6.5 

41 15
 42 15
 43 1.5
 50 Stop
Detection: 260 nm, 10 nm
Sample: 1 μL, 20/100 IDT @ 10ng 

(0.125% AcN/min)

Resolution of Longer Oligonucleotides
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Rs(100-90) = 2.05

Rs(100-90) = 3.1
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 Adjusting gradient for closer matching of Rt across this sample yields little effect on Rs or PC
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ssRNA Under Ion Pairing

• ssRNA has less retention compared to 
ssDNA under the same conditions

• ssRNA has a relatively flexible structure 
that can reduce its hydrophobic 
interactions

• As a result, ssRNA may not form stable 
complexes with the ion-pairing agents
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Primer Mix on OLIGO C18
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Primer Separated on OLIGO C18
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Questions?

Photo by Jamie Street on Unsplash 

https://unsplash.com/@jamie452?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/dog-sitting-in-front-of-book-Zqy-x7K5Qcg?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
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