

Improving Chromatography for Basic Analytes Using Positive Charge Surface **Material**

Conner McHale: Technical Support Specialist Advanced Materials Technology

cmchale@advanced-materials-tech.com Phone: 1-302-992-8060 *1124

EAS: Tuesday, November 19, 2024, 10:30am

Outline

HALO

Advanced Materials Technology

• Benefit of Fused-Core® Technology

Dealing with Basic Analytes/ Peak Tailing

- Ways to Improve Tailing
- HALO® PCS : Positively Charged Surface Chemistries

Applications

HALC

- Founded in 2005 and dedicated to the invention and innovation of superficially porous particle technology for the mission of advancing chromatography
- First company to commercially manufacture sub 3 µm superficially porous particles $Fused\text{-}Core@$
- Expanded IP portfolio to include materials, products and technologies

Facility

- ISO 9001 QMS certified company
- Fully equipped state of the art laboratories
- All operations handled in Wilmington, DE
	- R&D, Applications, QA/QC, Manufacturing, Sales and Marketing
- Global distribution

AMT is a company of innovators and continues to grow and deliver enabling materials to market. Our incredible team is our greatest resource.

SPP Technology

HALO

HALO 1000 Å, 2.7 µm

Superficially Porous Particle (SPP)

Fully Porous Particle (FPP)

Tailing Peak Shape of Basic Compounds

- When <u>basic</u> compounds are run at low pH, they gain a proton and become positively charged.
- At high sample loads, the tailing will become significant, peak shape will suffer, and retention decreases - the "non-linear isotherm".
- This is not a simple "silanol" concern.

Solutions to Improve Tailed Peak Shape of Basic Compounds

HALC

- 1. Increase the ionic strength of the mobile phase by adding salt or buffer
- 2. Use an ion pair agent
- 3. Use a non-silica based column
- 4. Elevate the pH
- 5. Use a different stationary phase

1. Increase the ionic strength of the mobile phase by adding salt or buffer

HALO 160Å ES-C18, 2.1 x 100 mm; Flow rate: 0.5 mL/min; T= 60°C; A: Water/acid modifier; B: ACN/0.1% Formic Acid; Gradient: 20 mM Ammonium Formate/0.1% Formic Acid : 24% to 27% B in 20 min.; 0.1% Formic Acid : 20% to 24% B in 20 min

Using 20 mM Ammonium Formate/0.1% Formic Acid:

Pros:

- 1. Improved peak shape
- 2. Increased retention

Cons:

- 1. Additional step when prepping mobile phase
- Reduced ionization efficiency with MS detection
- 3. "Belief" that MS source will need more frequent cleaning

J. Am. Soc. Mass Spectrom. (2017) 28:2384Y2392

2. Use an ion pair agent

Pros of using 0.1% TFA:

1. Improved peak shape

2. Increased retention

Column: HALO 160 Å ES-C18, 2.7 μm, 4.6 x 100 mm; Flow rate: 2.0 mL/min; T= 30°C; A: Water/acid modifier; B: ACN/0.1% TFA or Formic Acid Gradient: 1.5% to 26% B in 15 min.; Detection: UV @ 215 nm; Injection: 8 µL (800 ng) of synthetic peptides S1-S5

Con of using Ammonium Formate or TFA

Reduced ionization efficiency with MS detection compared to formic acid

10 mM acid in mobile phases; 2.1 x 150 mm HALO 160 Å C18, 0.3 mL/min, 2-47% ACN in 40 min, 60°C, 300-1800 m/z, 4 kV, 0.33 s

halocolumns.com | confidential | HALO® and Fused Core® are registered trademarks of Advanced Materials Technology. Made in the USA.

Peak Identities

3. Substance P

5. Mellitin

1. Leucine Enkephalin

Angiotensin I

4. β-endorphin

3. Use a non-silica based column

- Use a column based on an organic polymer when operating at elevated pH
- Use a column based on a different metal oxide, such as alumina, titania, or zirconia

Pros:

- 1. Can improve peak shape at elevated pH
- 2. Non-silica packings will also exhibit the base non-linear isotherm

HALC

Cons:

- 1. Lower back pressure ratings with organic polymer columns
- Some compounds perform poorly
- 3. Columns with metal oxides other than silica not widely used
- 4. Solvent compatibility concerns

4. Raise the pH

Pros:

- 1. Improved peak shape (deprotonate)
- 2. Increased retention bases (reduce charge)
- 3. "Hybrid silica" increasingly available

/ancedmaterialstechnology

Cons:

- 1. pH stability of *traditional silica* materials is poor
- 2. Sample stability (solubility, oxidation) with alkaline conditions

Testing Conditions: Mobile Phase: A: Water/ additive B: Acetonitrile Gradient: 10-90%B in 8 min Instrument: Shimadzu Nexera X2 (103) Temperature: 30 °C Flow Rate: 0.4 mL/min. Column: HALO 120Å ELV C18, 2.7µm, 2.1 x 100mm Pre-Column Filter: EXP2/ Optimize Technologies

5. Use a different stationary phase

Introducing the HALO® PCS Phases: **P**ositively **C**harged **S**urface $\left[{\sf CH}_2\right]_{17}$ -CH₃] [O-Si-PCS Ligand]_v O-Si-PCS Ligand] [PCS Ligand] HALO 90 Å PCS C18 **HALO 160 Å PCS C18 HALO 90 Å PCS PHENYL-HEXYL**

90 Å, 2.7 µm for Small Molecule Analyses

- Excellent peak shape and increased loading capacity for basic compounds
- Alternate L1 selectivity (PCS C18)
- Alternate L11 selectivity (PCS Phenyl-Hexyl)

cedmaterialstechnoloou

Built upon Fused-Core[®] technology for fast, efficient and reliable separations

160 Å, 2.7 µm for Peptide Separations

- Significantly improved peak widths and symmetry for basic peptides compared to traditional peptide C18 stationary phases
- Designed for performance with formic acid avoiding LCMS signal suppression from TFA
- Alternate L1 selectivity with optimized pore size for peptide separations

HALO® C18 vs. HALO® PCS C18

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 min 0 25000 50000 75000 100000 $\frac{uV}{l}$ HALO® C18 TF: 3.39 Testing Conditions: Mobile Phase: A: Water/ 0.1% FA B: Acetonitrile/ 0.1% FA Isocratic Separation: 30% B Instrument: Shimadzu Nexera X2 Wavelength: PDA, 254 nm Injection: 0.5 µl Temperature: 30 °C Flow Rate: 0.5 mL/min. Column: HALO 90Å, 2.7µm, 2.1 x 100mm **Peak Identities:** 1. Uracil 2. 4-Methoxybenzoic acid 3. 2-Chlorobenzoic acid 4. Imipramine (base) 5. Dimethyl phthalate 1 $\frac{2}{1}$ 3 4 5 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 min 0 25000 50000 75000 $100000^{4/3}$ TF: 1.52 HALO® PCS C18 1 2 3 4 5

Why do we need a Positively Charged Stationary Phase? (2)

HALO**®** PCS Loading Capacity 0.1% Formic Acid

HAL

HALO® PCS Phenyl-Hexyl vs. standard (uncharged) HALO® Phenyl-Hexyl

Testing Conditions:

Column: 2.7 µm, 2.1 x 100 mm phase as labeled Mobile Phase A: Water/ 0.1% Formic Acid B: Acetonitrile/ 0.1% Formic Acid Isocratic: 12% B HALO® PCS Phenyl-Hexyl 18% B HALO® Phenyl-Hexyl Flow Rate: 0.4 mL/min Instrument: Nexera Injection: 0.2, 0.5, 1.0 µL (10,25,50 ng) Temperature: 35⁰C

• Sharp, symmetrical peaks are observed from 10-50 ng injected on the HALO® PCS Phenyl-Hexyl column

• Peak widths are 50% smaller with HALO® PCS Phenyl-Hexyl

A Closer Look at the Baseline

At 10 ng of each tetracycline injected on column, the sharper, narrower peaks enable small impurities to be detected on the HALO® PCS Phenyl-Hexyl column.

HALO 160 Å PCS C18 Peptide

Why HALO 160Å PCS C18?

- Synthetic peptide analysis and protein digest analysis (e.g. via trypsin) share chromatographic challenges that are like the challenges of smallmolecule basic analyte separations.
- The use of weakly acid mobile phases (e.g. LCMS-friendly formic acid) with 160Å PCS C18 can be employed for efficient separations of amphoteric (possessing basic & acidic characteristics) compounds such as peptides.
- Improvements in peptide peak shape were observed (versus 160Å C18).

Acetylated Arginine **O-H** Glycine

SPECIFICATIONS

Ligand: dimethyloctadecylsilane Carbon Load 90 Å: 7.5% Particle Size: 2.7 µm Pore Size: 90 and 160 Å **USP Designation: L1**

Carbon Load 160 Å: 5.09% Surface Area 90 Å: 135 m²/g Surface Area 160 Å 90 m²/g

Endcapped: Yes both 90 and 160 Å Low pH Limit /Max T: 2/60 °C High pH Limit/Max T: 7/40 °C

Peptide Analysis: 160Å PCS C18 vs 160Å C18

ancedmaterialstechnology

Peptide Load Tolerance

vancedmaterialstechnology

1, 5, 10, and 15µL injections of synthetic peptides (0.3µg/µL peptides) on 4.6x100mm

Ac-RGVVGLYLGK-NH2 (1102 Da)

Trastuzumab Tryptic Digest: Higher Peak Capacity with HALO® PCS C18 Peptide

0.4mL/min; 60°C; 3-50% in 30 min; 2 µg tryptic digest A= 0.1% Formic Acid in H_2O B=0.1% Formic Acid in ACN Shimadzu NexeraX2 -> diverter valve -> QExactive HF (res=240,000)

HALO® PCS C18 Peptide 2.7 µm, 2.1 x 150 mm

 n_{PC} = 488

MarvelXACT Post-Column Plumbing:

- 1. 50 μ m x 350 mm from column to diverter valve
- 2. 50 µm x 350 mm from diverter valve to union
- 3. 50 µm x 150 mm from grounding union to HESI II

$n_{\rm pc}$ based on ID peptides

rGlucagon Deamidation with Formic Acid Conditions: HALO® PCS C18 Peptide

ancedmaterialstechnology

• Surface modified packing exhibits improved PW, tailing and resolution in this Formic Acid separation.

Technical Resources

HALO[®] HPLC Columns for Chromatography Separation | LC Columns (halocolumns.com)

HALO

advancedmaterialstechnology

Questions?

HALO

Technical and Marketing Materials:

• [www.halocolumns.com](http://www.fused-core.com/)

Technical Support:

• support@advanced-materials-tech.com

Conner McHale Technical Support Specialist Advanced Materials Technology

cmchale@advanced-materials-tech.com Phone: 1-302-992-8060 *1124

halocolumns.com

3521 Silverside Road, Suite 1-K Quillen Building Wilmington, DE 19810

(302) 992-8060

