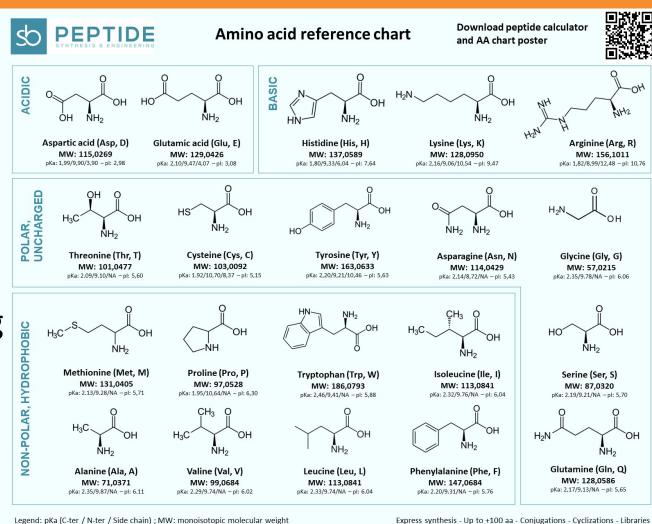
Improved Bioseparations with a Novel Charged Surface Superficially Porous Silica Column

Stephanie Schuster, Ph.D., Joshua K. McBee, Ph.D., Conner McHale, Peter Pellegrinelli, Barry E Boyes, Ph.D.

Advanced Materials Technology, Inc.



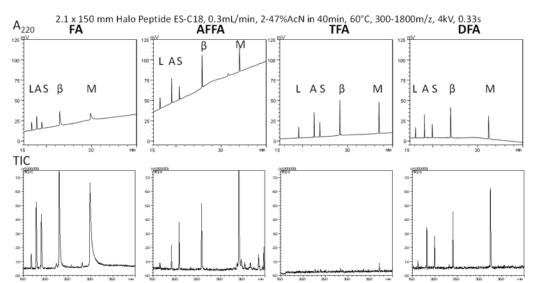
Pittcon March 3, 2025

Peptides are Basic Compounds

- In acidic conditions:
 - N-terminus protonated
 - Lysine/Arginine are protonated
 - C-terminal protonated
 - Carboxylic acids are neutral
- Basic compounds can be challenging
 - Reverse Phase

advancedmaterialstechnology

www.sb-peptide.com


HALO

HALO

Transitioning from HPLC-UV to HPLC-MS

- Traditional HPLC-UV ion pairing uses Trifluoroacetic acid for good peak shape
- TFA causes significant ion suppression when using Mass Spectrometry as detector
- Weaker ion pairing agents
 - Formic Acid
 - Amm Formate/FA
 - Acetic Acid
 - DFA

rancedmaterialstechnology

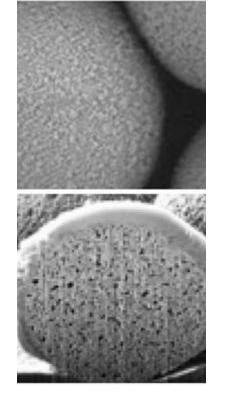
Peptide	Abbrev.	MW
[Leu5]-enkephalin	L	555.6
angiotensin I, human acetate hydrate	А	1297
substance P acetate salt hydrate	S	1348 2847
Melittin, honey bee venom	М	
beta-endorphin, human	β	3465

• Weaker ion pairing agents cause degradation of peak shape on traditional C₁₈

HALO

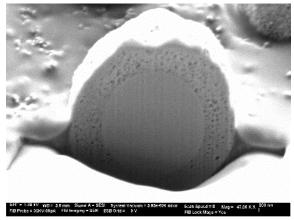
The Rapid Development Cycle of Mass Spectrometry

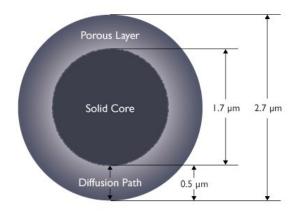
- Chromatography has struggled to keep up with the rapid advances in MS
 - Faster electronics


/ancedmaterialstechnology

- Improved sensitivity
- Additional dimensions of separation (Ion Mobility)
- Ionization is now the weakest link in the LCMS analytical workflow (Sorry Dr. Fenn!)
- Efficient Chromatography is more important than ever to minimize charge competition, ion suppression during ESI.
- Increasing demand for Chromatography columns specific for LCMS friendly conditions.

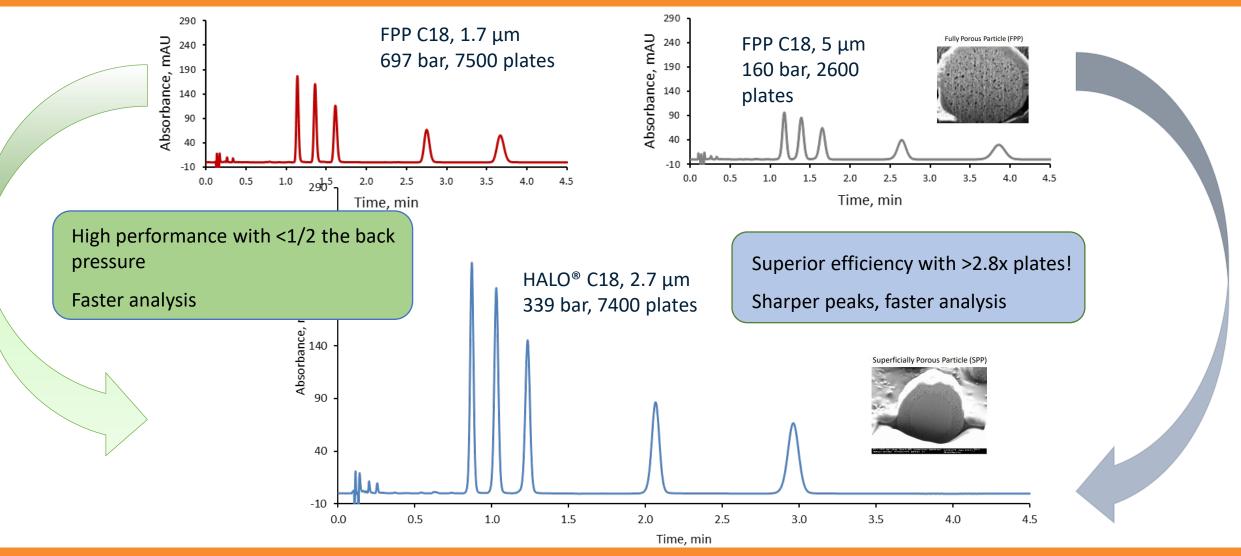
Fused-Core[®] Technology


HALO


HALO 90 Å, 2.7 μm

Improvements in silica and columns

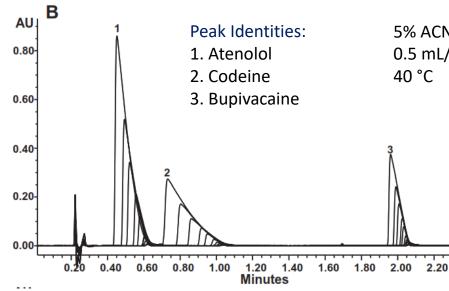
- Smaller column diameter
 - Increases sensitivity
 - Decreases Lifetime
 - More difficult to work with
 - Reduced loading capacity
- Smaller Silica Particles
 - $N \propto 1/d_p$
 - Increases Back Pressure
- Superficially Porous Silica Particles
 - Shorter diffusion distances
 - Sharper peak shapes
 - Reduced Back Pressures


Superficially Porous Particle (SPP)

Fully Porous Particle (FPP)

Power of Fused-Core® Technology

HALO



Managing Basic Compound Separations (including peptides) in Reversed-Phase

Tailing Peak Shape of Basic Compounds

HALO

- When basic compounds are run at low pH, they gain a proton and become positively charged.
- At high sample loads, the tailing will become significant and the peak shape will suffer with weak acidic mobile phase modifers.

5% ACN/0.1% formic acid for 1 min, then 5-95% ACN/0.1% formic acid in 3 min 0.5 mL/min; 230 nm

Joséphine Ruta, Daria Zurlino, Candice Grivel, Sabine Heinisch, Jean-Luc Veuthey, Davy Guillarme, Evaluation of columns packed with shell particles with compounds of pharmaceutical interest, J. Chromatogr. A 1228 (2012) 221-231.

McCalley, D.V. Rationalization of Retention and Overloading Behavior of Basic Compounds in Reversed-Phase HPLC Using Low Ionic Strength Buffers Suitable for Mass Spectrometric Detection. Anal. Chem. 2003 ,75,3404-3410.

Goal is to have symmetrical peak shapes across a wide range o. of sample concentrations

Using a modified silica stationary phase

Introducing the HALO[®] PCS Phases:

CH₃ [O-Si-(CH₂)₁₇-CH₃]_x CH₃ [O-Si-PCS Ligand]_y R

HALO 90 Å PCS C18

90 Å, 2.7 μm for Small Molecule Analyses

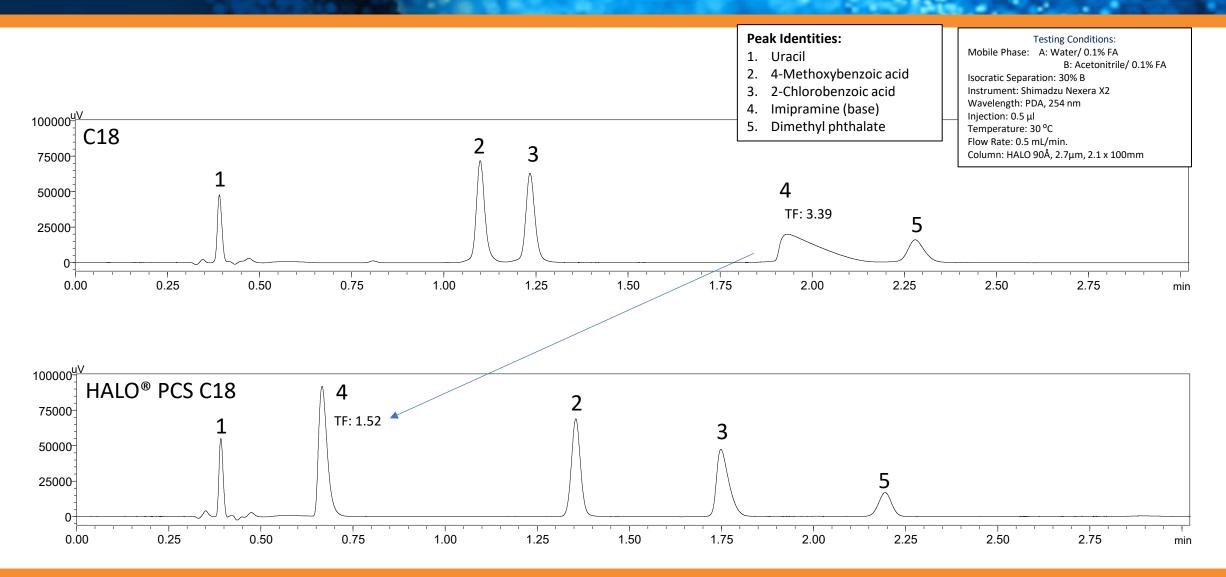
- Excellent peak shape and increased loading capacity for basic compounds
- Alternate L1 selectivity (PCS C18)
- Alternate L11 selectivity (PCS Phenyl-Hexyl)

edmaterialstechnoloou

• Built upon Fused-Core[®] technology for fast, efficient and reliable separations

160 Å, 2.7 μm for Peptide Separations

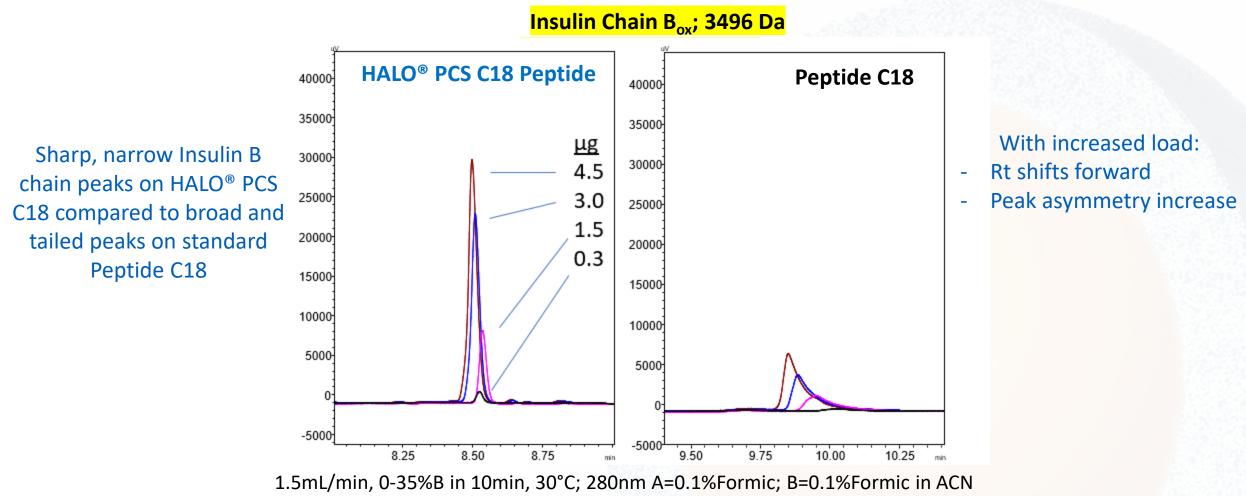
- Significantly improved peak widths and symmetry for basic peptides compared to traditional peptide C18 stationary phases
- Designed for performance with formic acid avoiding LCMS signal suppression from TFA
- Alternate L1 selectivity with optimized pore size for peptide separations


Positively Charged Surface

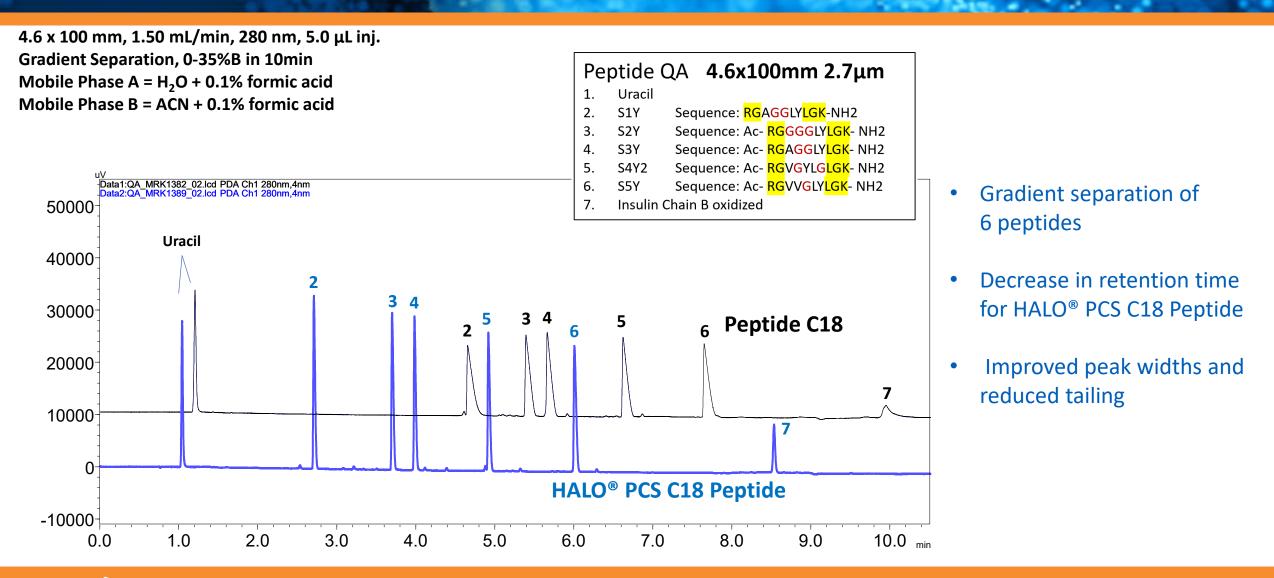
[PCS Ligand]

HALO 90 Å PCS PHENYL-HEXYL

C18 vs. HALO[®] PCS C18


HALO

Peptide Load Tolerance


HALO

1, 5, 10, and 15µL injections of polypeptide ($0.3\mu g/\mu L$ peptides) on 4.6x100mm

/ancedmaterialstechnology______halocolumns.com | confidential | HA

HALO[®] PCS C18 Peptide vs. Traditional Peptide C18 HALO[®]

🤰 advancedmaterialstechnology

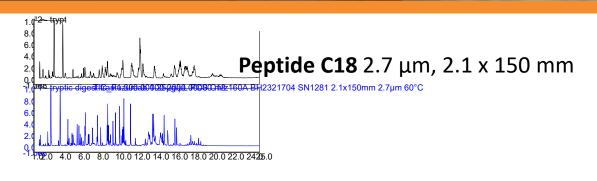
HALO[®] PCS C18 Peptide: Rapid Separation

1µL of Synthetic Peptide Standard (0.3µg/µL) PCS C18 Peptide 2.1x50mm 2.7µm 1mL/min 30°C (360bar), 0-35%B in 1.5min; A=0.1% Formic Acid; B=0.1% Formic Acid in ACN 6 22.5 280nm,4nm Uracil 1. Sequence: RGAGGLYLGK-NH2 2. S1Y 3. S2Y Sequence: Ac- RGGGGLYLGK- NH2 20.0 4. S3Y Sequence: Ac- RGAGGLYLGK- NH2 5 S4Y2 Sequence: Ac- RGVGYLGLGK- NH2 5. 17.5 S5Y Sequence: Ac- RGVVGLYLGK- NH2 6. Insulin Chain B oxidized 15.0 **Resolution maintained between peaks 3 and 4 using a** 12.5 50 mm length HALO[®] PCS C18 Peptide column! 10.0 7.5 5.0 2.5 0.0 1.50 1.75 0.00 0.25 0.50 0.75 1.00 1.25 2.00 2.25 2.50 2.75 min

Peptide Impurity Characterization

	Structure	Mass (mi.)	[M+2H] ⁺²	ОН
APP695-14Pep	VPT ²⁹¹ T ²⁹² AASTPDAVDK	1371.6881	686.8513	HO O *
APP695-14GPep	VPTT(GlcNAc)AASTPDAVDK	1574.7675	788.3910	O≓ CH₃

Synthetic peptide of 14 aa, glycosylated at position 4 (Thr292), purity by LC/UV = 98+%What Impurities are present? How much Parental peptide is in the Glycosylated Peptide sample?


> HALO[®] PCS C18 Peptide, 2.1 x 100 mm 0.5 mL/min, 2-12%B in 15 min, 30°C; A=0.1%Formic; B=0.1%Formic in AcN QExactive HF, 200 ng each injected (0.4 μ L)

NL: 3.70E9 TIC MS A695 A695G 7.30 PCSC18160Å 2 1m **TIC 1:1** 3.0E9 mFA LCMS 1to1 BE B01 Intensity 2.0E9 1.0E9 7.08 0.

RT:0.00-15.01

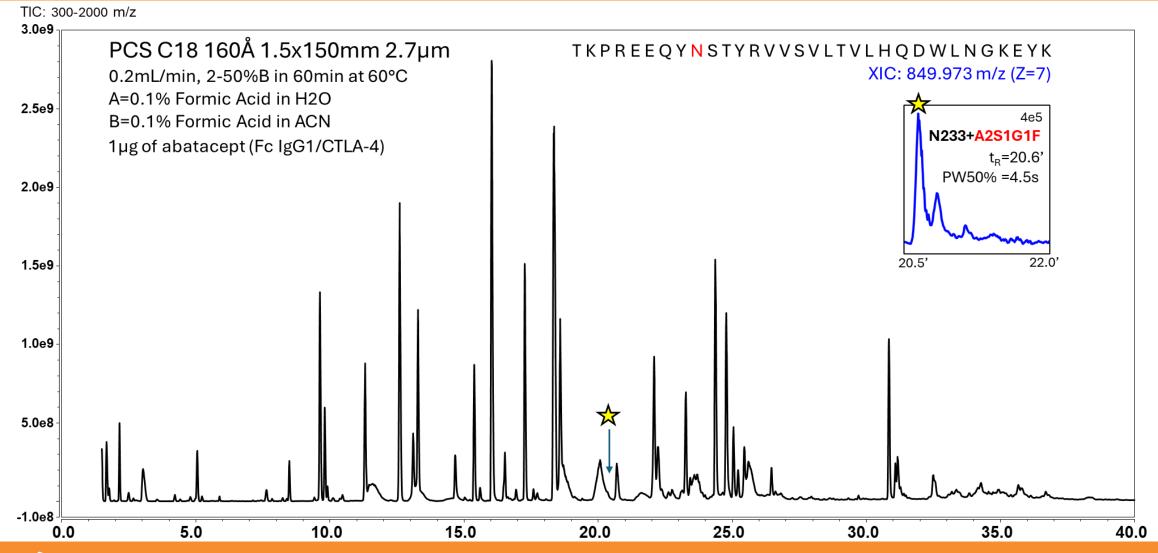
Trastuzumab Tryptic Digest: Higher Peak Capacity with HALO® PCS C18 Peptide

0.4mL/min; 60°C; 3-50% in 30 min; 2 μg tryptic digest A=0.1% Formic Acid in H₂O B=0.1% Formic Acid in ACN Shimadzu NexeraX2 -> diverter valve -> QExactive HF (res=240,000)

HALO[®] PCS C18 Peptide 2.7 μm, 2.1 x 150 mm

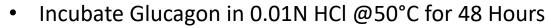
*n*_{PC} = 488

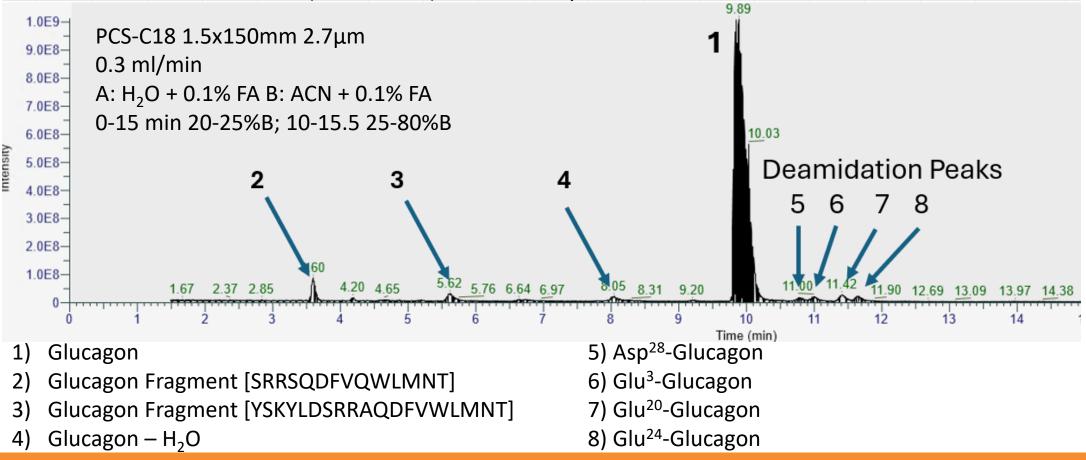
 $n_{\rm PC} = 170$


MarvelXACT Post-Column Plumbing:

- 1. 50 μm x 350 mm from column to diverter valve
- 2. $50 \ \mu m \ x \ 350 \ mm m$ from diverter value to union
- 3. 50 $\mu m \, x \, 150 \, mm$ from grounding union to HESI II

$\pmb{n}_{\rm PC}$ based on ID peptides


HALO[®] PCS C18 Peptide: 1.5 mm ID Columns for Fusion Protein Tryptic Digest



USP Glucagon Suitability Test

HALO

- >7% of total peak area desamido glucagons
- USP Guidelines: L1 column (3.0x150mm) 45 minute separation

Conclusions

HALO

- Ion pairing agents are frequently not MS friendly
- Ion pairing agents that work well with MS generally degrade chromatographic separation
- Chromatographic separations have struggled to keep up with the speed of MS development
- MS specific silica is needed for separations in weak ion pairing agents and for basic compounds
- HALO PCS-C18 has a surface charge to improve separation of basic compounds in weak ion pairing
- HALO PCS-C18 outperforms C18 in peptide separations in 0.1% formic acid
 - Improved Peak Shapes
 - Faster Separations
- Moving PCS-C18 to smaller diameter columns further improves separation
 - Narrower peak widths
 - Higher Peak Capacities
 - Greater Sensitivity

Imaterialstechnoloou

Thank You!