Using High pH LCMS Conditions for Impurity Characterization of GLP-1 Therapeutics

Joshua K. McBee, Ph.D., Barry E Boyes, Ph.D. Advanced Materials Technology, Inc.

Eastern Analytical Symposium

November 17, 2025

GLP-1 Agonist overview

FDA Approved

- Exenatide (Byetta[®]) Approved in 2005; Half-Life: 2.4 Hrs
- Liraglutide (Victoza®) Approved in 2010; Half-Life: 11 Hrs;
- Semaglutide (Ozempic®) Approved in 2017; Half-life: 7 days;
- Tirzepatide (Zepbound®) Approved in 2022; Half-life: 5 days;
- AiB Inhibits dipeptidyl Peptidase 4 (DPP-4)

Modifiers

 $X = \alpha$ -amino butyric acid $Z = \alpha$ -methyl Leucine

K = AEEA-AEEA-γ-Glu-ODDA

None

K = γ-Glu-C16 FA

None

 $K = AEEA-AEEA-\gamma-Glu-C20 DA$ $K = AEEA-\gamma-Glu-C20 DA$

AEEA = 2-[2-(2-aminoethoxy)ethoxy]acetic acid

In Development

- Retatrutide in Ph 3 Trials (Expected 2026); Half-life: 8 days; C20 diacid at Pos 17 Lys, AiB at pos 2,20; α-metLeu pos 13
- Orforglipron Ph 3 Trials (Expected 2026); First orally available GLP-1 agonist.

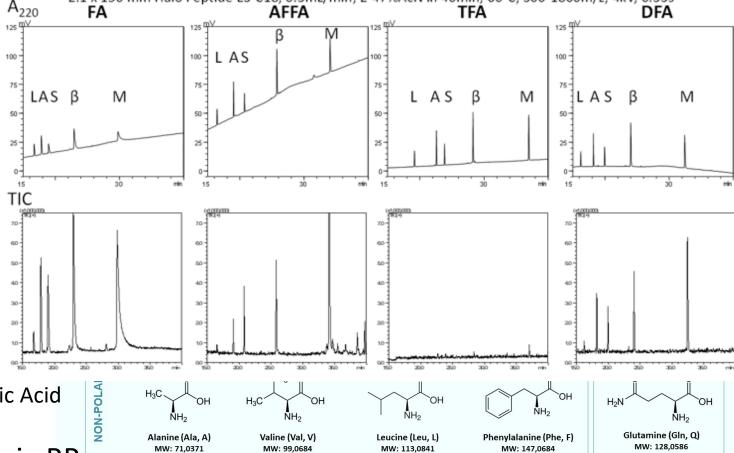
Solid/Liquid Phase Peptide Synthesis

- Modern GLP-1 agonists require SPSS.
- SPSS yields are typically sub-optimal
- Challenges for purification and impurity analysis

Figure 2. General SPPS methodology for the synthesis of peptides via (1) deprotection; (2) amino acid activation; and (3) coupling. Note: an optional capping step is often included in a SPPS process but is not included in the figure.

- ANDA Guidelines for Peptide Impurities
 - NMT 0.5% of FLP that are characterized as "safe"
 - 0.1-0.5% identified, characterized, and demonstrated safe

Scheme 1. LPPS Portion of the Synthesis^a FmocHN—AA22-29—CO₂H la. PyOxim, *i*Pr₂NEt, c. Nanofiltration H_2N —AA22-39— $CONH_2$ 2a. PyOxim, *i*Pr₂NEt, $H_2N - AA15-39 - CONH_2$ 3. HATU, iPr2NEt, BocHN — AA1-39 — CONH₂ 8: Protected Tirzepatide 4. TFA. TIPS. DTT, DCM -AA1-39 -CONH₂ 1: Tirzepatide


Frederick, MO et al. Kilogram-Scale GMP Manufacture of Tirzepatide Using a Hybrid SPPS/LPPS Approach with Continuous Manufacturing, Org. Process Res. Dev. 2021, 25, pp1628-1636

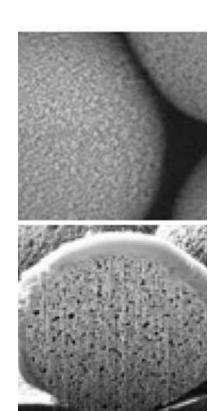
Peptides are Basic Compounds

- In acidic conditions:
 - N-terminus protonated
 - Lysine/Arginine are protonated
 - C-terminal protonated
 - Carboxylic acids are neutral

- Basic compound Separations can be Challenging via Reverse Phase
 - LC-UV Strong Ion pairing agents e.g. TFA
 - LC-MS Weaker Ion Pairing Agents e.g. Formic Acid
- Ways to improve peptide separations via RP

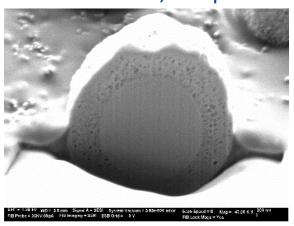
2.1 x 150 mm Halo Peptide ES-C18, 0.3mL/min, 2-47%AcN in 40min, 60°C, 300-1800m/z, 4kV, 0.33s

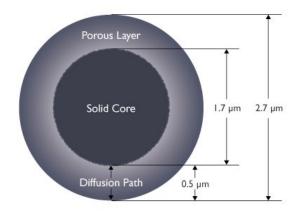
Legend: pKa (C-ter / N-ter / Side chain); MW: monoisotopic molecular weigh


Express synthesis - Up to +100 aa - Conjugations - Cyclizations - Libraries

www.sb-peptide.com

Fused-Core® Technology

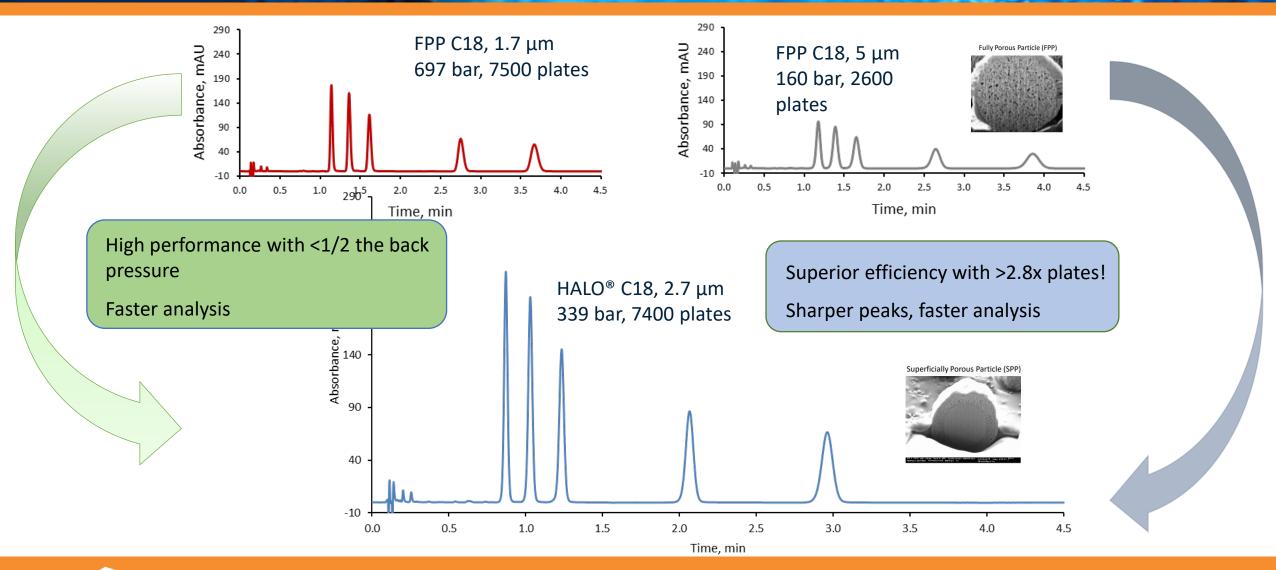



Fully Porous Particle (FPP)

Silica Technology Improvements

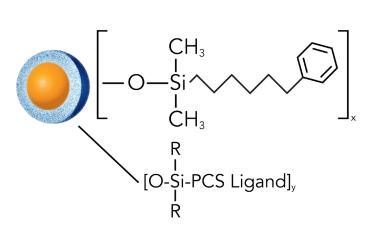
- Smaller Silica Particles
 - $N \propto 1/d_p$
 - Increases Back Pressure (exponentially)
- Smaller column diameter
 - Increases sensitivity
 - Decreases Lifetime
 - More difficult to work with
 - Reduced loading capacity
- Superficially Porous Silica Particles
 - Shorter diffusion distances
 - Sharper peak shapes
 - Reduced Back Pressures

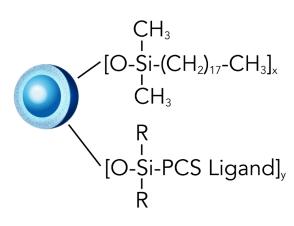
HALO 90 Å, 2.7 μm



Superficially Porous Particle (SPP)

Power of Fused-Core® Technology


Using a modified silica stationary phase


Introducing the HALO® PCS Phases:

Positively Charged Surface

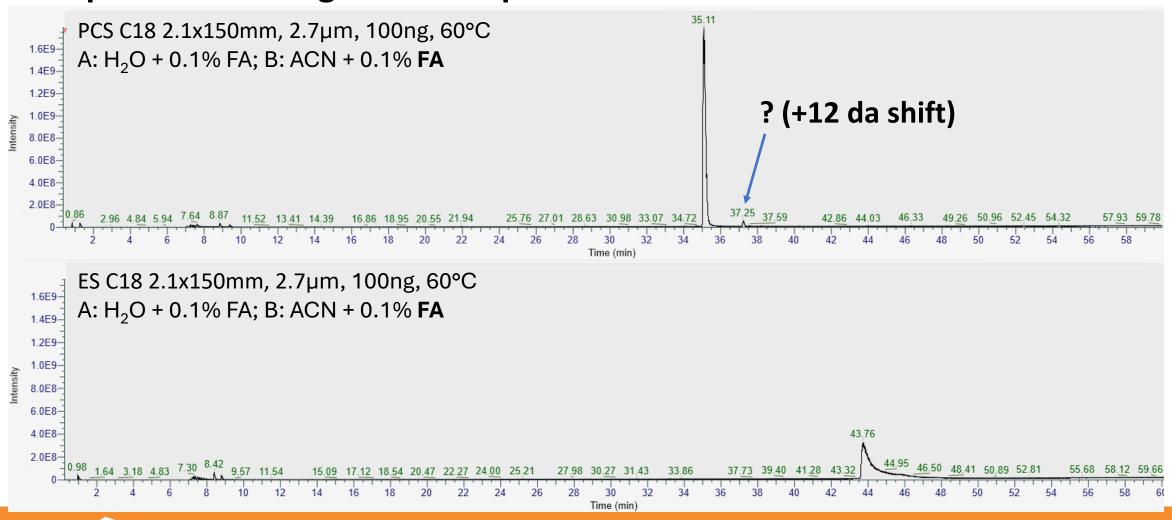
HALO 90 Å PCS C18

HALO 90 Å PCS Phenyl-Hexyl

HALO 160 Å PCS C18

90 Å, 2.7 μm for Small Molecule Analyses

- Excellent peak shape and increased loading capacity for basic compounds
- Alternate L1 selectivity (PCS C18)
- Alternate L11 selectivity (PCS Phenyl-Hexyl)
- Built upon Fused-Core® technology for fast, efficient and reliable separations


160 Å, 2.7 μm for Peptide Separations

- Significantly improved peak widths and symmetry for basic peptides compared to traditional peptide C18 stationary phases
- Designed for performance with formic acid avoiding LCMS signal suppression from TFA
- Alternate L1 selectivity with optimized pore size for peptide separations

Semaglutide ES-C18 vs PCS C18

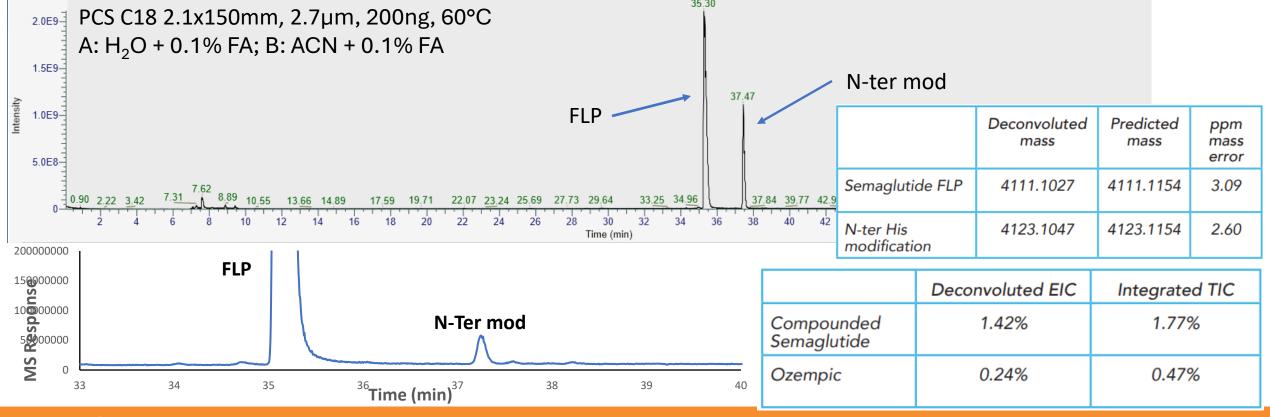
Compounded Semaglutide Sample

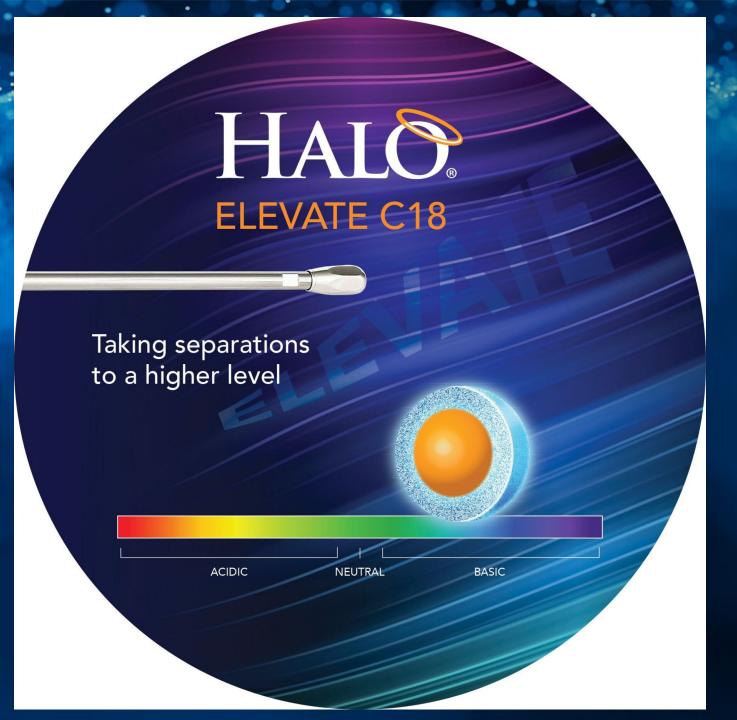
N-Terminal Modification of Liraglutide

N-terminal Histidine sensitive to Formaldehyde exposure in Liraglutide

- Semaglutide also has N-terminal Histidine
- Is Semaglutide also sensitive to formaldehyde?

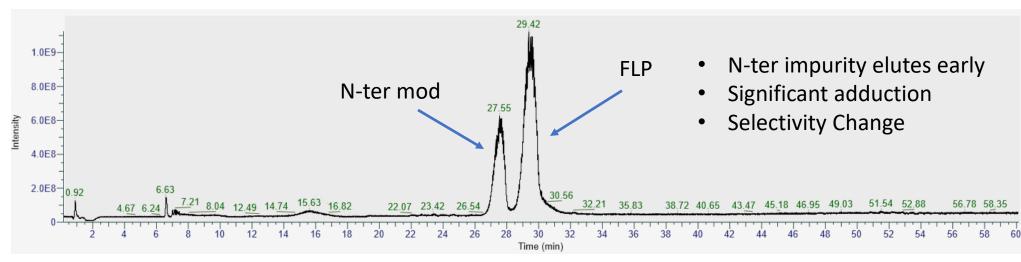
Sheikh, AR et Al. J. Pharmaceutical Sciences 113(2024) pp3246-3254




Semaglutide in Tris buffer

- Tris buffer manufactured from Nitromethane and Formaldehyde in a 1:3 Molar Ratio
- Tris buffer can also thermally degrade back into formaldehyde

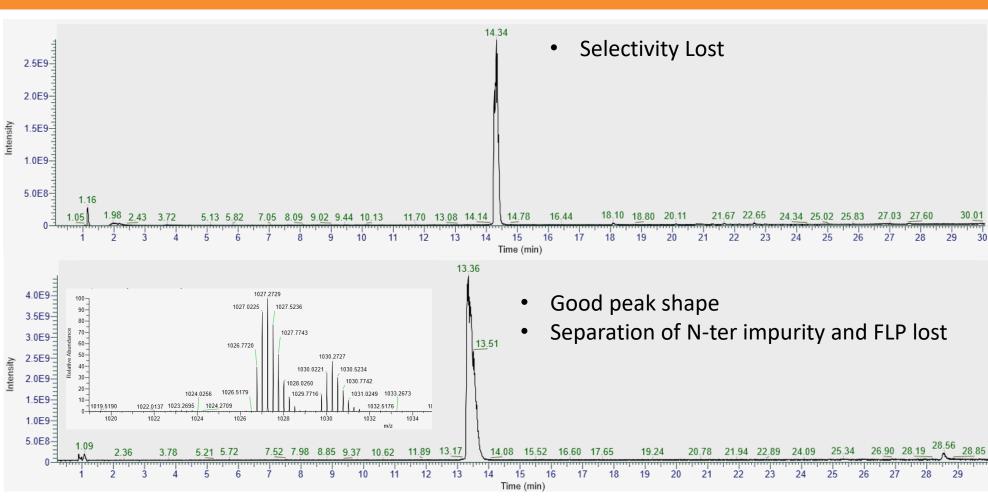
1mg Research Grade Semaglutide in 1ml 10mM Tris-HCl at pH 8.0. Heated 24hr at 40°C


- Modified Organo-Silane Technology
- Excellent Lot to Lot Reproducibility and Stability in Alkaline Environments
- pH 2-12 Enables Wide Operational Use Range for Robust Method Development
- Reliability of Proven Fused-Core®
 Technology for Highest Efficiencies and Speed
- 2.7 µm particle size in 120 Å
- 1000 Å OLIGO Now available!

Altering Selectivity using high pH

Goal: Find HPH conditions for GLP-1 that are also LC/MS friendly

20mM NH₄OH pH 9 1µg Semaglutide Elevate C18 2.1x150mm


- Higher pH in NH₄OH showed peak shape degradation
- Other high pH buffers that are MS friendly.
 - Ammonium bicarbonate
 - N-Methyl Piperidine

HPH Separation of Semaglutide

10mM AmBic pH 7.5 1µg Semaglutide Elevate C18 2.1x150mm Positive Mode

10mM N-methyl piperidine pH 11.5 1µg Semaglutide Elevate C18 2.1x150mm Negative Mode

- N-ter modification comes out slightly earlier than FLP
- Sensitivity comparable to Formic Acid conditions on PCS C18

Summary

- GLP-1's are a rapidly growing business
- Manufacturing presents significant challenges for Analytical QC processes
- Identification of a CQA in Liraglutide/Semaglutide
- HALO® PCS C18 ideal for evaluating impurities in GLP-1's at low pH
- HPH LC/MS presents methodology challenges
 - MS friendly buffers
- HALO® Elevate C18 shows robust separation conditions up to pH 11.5
 - Selectivity changes using N-terminal modification of Semaglutide as a marker
 - Provides a variety of conditions for analytical method development

halocolumns.com

3521 Silverside Road, Suite 1-K Quillen Building Wilmington, DE 19810

(302) 992-8060

